www.pwc.com

How Aviation Security can benefit from policies, standards and best practices in other domains.

5 November 2014 *marc.sel@be.pwc.com*

Agenda

- Best Practices in other domains
- Best of both worlds

Aviation Security

Aviation Security What

ICAO: « Safeguarding civil aviation against acts of unlawful interference »

Viewpoints:

- People (trained and licensed aviation professionals aircrew, airtraffic, meteorologic, airport, ...)
- Process (multiple supply chains aircraft, airport, control, maintenance)
- Technology

Who are the actors?

Which levels should be involved?

Which actions should be taken, in what order?

Best practices in other domains

NATO Multi National Experiment 7

January 2011 – December 2012 ⇒ Access to the Global Commons

Identify all relevant stakeholders E.g. in the cyber landscape

Enterprises – SME – Public Sector

Aviation Security PwC Infrastructure – Critical Infrastructure

Suggested Approach Conceptual

Security Baseline

- 1. Install a management cycle with accountability and budget
- 2. Implement user education and awareness, and integrate in evaluation cycle
- 3. Inventory of authorised devices & software
- 4. Create a layered information security architecture
- 5. Address security in software development and acquisition
- 6. Configure systems securely, patched and up to date, and deploy antivirus (laptop/desktop/server/mobile/routers/access points)
- 7. Protect information physically wherever it resides
- 8. Manage the lifecycle of accounts, apply "need to know" in granting logical access, and control the use of administrative privileges
- 9. Use strong passwords and keep them safe (better: use hardware tokens or biometrics)
- 10. Generate and analyse logs
- 11. Prepare incident management
- 12. Prepare business continuity
- 13. Perform penetration testing

Selecting your 'above baseline' safeguards

AS-IS

-	`	D	
_	ノー.	D.	Ľ

Confidentiality	C.1	Sniffing	2	3	6
	C.2	Acc. Disclosure	2	2	4
	C.3	Traffic analysis	3	3	9
	C.4	Rerouting	1	1	1
	C.5	Software bugs	3	4	12
	C.6	Pass-through	3	2	6
Integrity	I.1	Transmission errors	1	3	3
	1.2	Intentional modification	2	3	6
	1.3	Replay attack	3	4	12
	I.4	TCP/IP weaknesses	2	3	6
	l.5	Credential guessing	3	4	12
	I.6	Software bugs	3	4	12
	1.7	Priviledge escalation	3	4	12
	l.8	Active code	3	4	12
	I.9	Pass-through	3	2	6
Availability	A.1	Ext. physical accident	4	2	8
	A.2	Ext. logical accident	4	3	12
	A.3	Int. physical accident	4	2	8
	A.4	Int. logical accident	4	3	12
	A.5	DOS	4	2	8
	A.6	pass-through	3	2	6
	A.7	facilities	3	2	6
	A.8	int. staff problems	1	1	1
	A.9	ext. staff problems	1	1	1
	A.10	Sabotage, terrorism, theft	2	2	4

Confidentiality	C.1	Sniffing	2	3	6
	C.2	Acc. Disclosure	2	2	4
	C.3	Traffic analysis	3	3	9
	C.4	Rerouting	1	1	1
	C.5	Software bugs	3	2	6
	C.6	Pass-through	3	2	6
Integrity	I.1	Transmission errors	1	3	3
	1.2	Intentional modification	2	3	6
	1.3	Replay attack	3	3	9
	I.4	TCP/IP weaknesses	2	3	6
	l.5	Credential guessing	3	2	6
	I.6	Software bugs	3	2	6
	1.7	Priviledge escalation	3	2	6
	l.8	Active code	3	2	6
	I.9	Pass-through	3	2	6
Availability	A.1	Ext. physical accident	4	2	8
	A.2	Ext. logical accident	4	2	8
	A.3	Int. physical accident	4	2	8
	A.4	Int. logical accident	4	2	8
	A.5	DOS	4	2	8
	A.6	pass-through	3	2	6
	A.7	facilities	3	2	6
	A.8	int. staff problems	1	1	1
	A.9	ext. staff problems	1	1	1
	A.10	Sabotage, terrorism, theft	2	2	4

Best of both worlds

Aviation Security PwC

Best of both worlds

Aviation is continuously transforming, increasingly by integrating more ICT

Physical checks/cargo screening must be complemented by logical checks, also upstream in the supply chain

Internet of Things, ConnectedCars/ConnectedPlanes will only increase importance of logical checks

Increasing role of:

- Secure SDLC (software development lifecycle)
- Cryptography (authentication, integrity, encryption)
- Biometrics (Smart Borders, ABC-gates)

Risk management applications as per ISO 31K and Information Security Management Systems (ISMS) as per ISO 27K can help to balance increasing ICT risk

Further references

- Aviation Security Engineering, a holistic approach, by Rainer Kölle, Garik Markarian and Alex Tarter, ISBN-13: 978-1-60807-072-5, Artech House
- ETSI on security annual free conference: <u>www.etsi.org/securityworkshop</u>
- ACDC <u>http://www.acdc-project.eu/</u>
- BSI (DE) <u>https://www.bsi.bund.de/</u>
- EC3 (within Europol, NL) <u>https://www.europol.europa.eu/ec3</u>/
- EDA (EU) <u>http://www.eda.europa.eu/</u>
- ENISA (EU) <u>http://www.enisa.europa.eu/</u>
- IDC Herzliya (IL) <u>http://www.ict.org.il/</u>
- NATO <u>http://www.ccdcoe.org/</u>
- NIST <u>http://www.nist.gov/cyberframework/</u>

Thank you for your attention

© 2014 PricewaterhouseCoopers. All rights reserved. "PricewaterhouseCoopers" refers to the network of member firms of PricewaterhouseCoopers International Limited, each of which is a separate and independent legal entity.