

Multithreat Multisite Protection: An Adversarial Risk Analysis Approach

J. Cano¹ D. Ríos Insua²

 1 URJC

²Royal Academy of Sciences, Spain

XXIII SRA. Istanbul. June 17, 2014

Security Economics: Socio economics meets security

Multithreat protection for one site

Multithreat multisite protection

Case study

General overview

<ロト < 同ト < ヨト < ヨト = - - 3,42年

- ARA (Ríos Insua et al., 2009) approach for multithreat problem over one site
 - Uncoordinated attacks.
 - Outcome of attacks might affect each other.
- Extension to multiple sites (Ríos Insua et al., 2014b)
 - Sequential Defend-Attack for each site/threat.
 - Models related by resource constraints and value aggregation.
 - No particular spatial structure.
- Case study: metro network protection against
 - Fare evasion. (Ríos Insua et al., 2014a)
 - Pickpocketing by a team.

1. Multithreat protection for one site

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

√5 624

- ARA builds decision analysis model for Defender, who forecasts actions of her intentional adversaries.
- Once with this knowledge, she decides optimal defense against attacks.
- Sequential Defend-Attack model.
 - Defender first chooses a portfolio of countermeasures
 - After observing it, Attacker decides his attack.

Description of problem

Basic multithreat protection problem

Defender aims at finding optimal defense d*.

• Consequences evaluated through utility $u_D(d, s_1, \ldots, s_m)$.

(日)、(四)、(E)、(E)、(E)

Optimal solution

- Assume cond. ind. $S_i | d, a_i \longrightarrow p_D(s_i | d, a_i)$.
 - Obtain expected utility, given the attacks

 $\psi_D(d|a_1,\ldots,a_m) = \int \cdots \int u_D(d,s_1,\ldots,s_m) p_D(s_1|d,a_1) \cdots p_D(s_m|d,a_m) ds_1 \ldots ds_m.$

- Suppose Defender able to build models $p_D(a_i|d)$.
- Assume cond. ind. of a_1, \ldots, a_m given d. Compute

$$\psi_D(d) = \int \cdots \int \psi_D(d|a_1, \ldots, a_m) p_D(a_1|d) \cdots p_D(a_m|d) da_1 \ldots da_m,$$

and solve

$$d^* \longleftarrow \max_{d \in \mathscr{D}} \quad \psi_D(d).$$

Assessment of Attacker's intentions

► To obtain *p_D(a_i|d)*, solve each attacker's problem (E.U. max.)

$$a_1^*(d) = \operatorname*{arg\,max}_{a_1 \in \mathscr{A}_1} \int u_{A_1}(a_1, s_1) p_{A_1}(s_1 | d, a_1) ds_1.$$

- ► Defender lacks knowledge $(u_{A_1}(\cdot), p_{A_1}(s_1|\cdot)) \rightarrow (U_{A_1}, P_{A_1}).$
- Approximate $\widehat{p_D}(a_i|d)$ through Monte Carlo simulation.
 - Assessment of $P_{A_1}(\cdot)$ typically based on $p_D(\cdot)$
 - Dirichlet distribution (process) for discrete (continuous).
 - For U_A , information about Attacker's interests
 - Aggregate with weighted measurable value function.
 - Assume risk proneness.
 - Distributions over weights and risk proneness coefficients.

(日) (同) (三) (三) (三) (3/24)

Possible generalizations

(*left*) If simultaneous, but uncoordinated attacks a₁,..., a_m jointly detrimental in face of d

 $p_D(s_1|d,a_1)\cdots p_D(s_m|d,a_m) \rightarrow p_D(s_1|d,a_1,\ldots,a_m)\cdots p_D(s_m|d,a_1,\ldots,a_m).$

(right) Cascading effect between results of attacks

 $p_D(s_1|d, a_1) p_D(s_2|d, a_2) \rightarrow p_D(s_1|d, a_1, s_2) p_D(s_2|d, a_2).$

2. Multithreat multisite protection

General methodology

(日) (同) (目) (日) (1/24)

- 1. Deploy one of previous models over each site.
- 2. Resource constraints coordinate models.
- 3. Aggregate value at nodes applying utility function.
- 4. Defender deploys d_j over site j, fulfilling $g(d_1, \ldots, d_n) \in \mathscr{D}$.
- 5. *i*-th Attacker performs a_{ij} over *j*-th site, satisfying $h_i(\mathbf{a}_i) \in \mathscr{A}_i$.
- 6. Interaction yields random results $S_{ij} \in \mathscr{S}_{ij}$.
- 7. Defender aggregates results through $u_D(\boldsymbol{d}, \boldsymbol{s}_1, \dots, \boldsymbol{s}_m)$.
- 8. To find optimal defense strategy d^* , compute

$$\psi_D(\boldsymbol{d}|\boldsymbol{a}_1,\ldots,\boldsymbol{a}_m) = \int \cdots \int u_D(\boldsymbol{d},\boldsymbol{s}_1,\ldots,\boldsymbol{s}_m) p_D(\boldsymbol{s}_{11}|\boldsymbol{d}_1,\boldsymbol{a}_{11})\cdots p_D(\boldsymbol{s}_{mn}|\boldsymbol{d}_n,\boldsymbol{a}_{mn}) \, \mathrm{d}\boldsymbol{s}_1 \ldots \mathrm{d}\boldsymbol{s}_m.$$
$$\psi_D(\boldsymbol{d}) = \int \cdots \int \psi_D(\boldsymbol{d}|\boldsymbol{a}_{11},\ldots,\boldsymbol{a}_{mn}) p_D(\boldsymbol{a}_{11}|\boldsymbol{d}_1)\cdots p_D(\boldsymbol{a}_{mn}|\boldsymbol{d}_n) \, \mathrm{d}\boldsymbol{a}_{11} \ldots \mathrm{d}\boldsymbol{a}_{mn}$$

3. Case study

Influence diagram

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

Description of problem

- Metro operator D protecting from:
 - Fare evasion. Two types of evaders:
 - Standard (standard random process).
 - Colluders A₁ (ARA; explicitly modeling intentionality).
 - ▶ Pickpockets A₂. Organized group. Security & image costs.

		Ro	ole	Features		
		Fare	Pick			
d_1	Inspector	Prev./rec.	_	Inspect customers. Collect fines		
d_2	Door guard	Prev.	—	Control access points		
d_3	Door	Prev.	—	New secured automatic access doors		
d_4	Ticket clerk	Prev.	—	Current little implication in security		
d_5	Guard	Prev.	Prev./rec.	Patrol along the facility		
d_6	Patrol		Prev./rec.	Trained guard+security dog		
d_7	Camera		Prev.	Complicate pickpocket actions		
d_8	Campaign	—	Prev.	Alert users about pickpockets		

Feasible portfolios

(日) (同) (目) (日) (15/24)

- Associated unit costs $q_1, q_2, q_3, q_5, q_6, q_7$.
- ▶ $d_4 \in \{0,1\}$ $(d_4 = 1 \rightarrow \text{clerks involved, incurred costs } q_4)$.
- ▶ $d_8 \in \{0,1\}$, $(d_8 = 1 \rightarrow \text{operator invests } q_8)$.

$$egin{aligned} q_1d_1+q_2d_2+q_3d_3+q_5d_5+q_6d_6+q_7d_7+q_8d_8&\leq B,\ d_1,d_2,d_3,d_5,d_6,d_7&\geq 0,\ d_1,d_2,d_3,d_5,d_6,d_7& ext{integer},\ d_3&\leq ar{d}_3,\ d_4,d_8&\in\{0,1\}, \end{aligned}$$

 \bar{d}_3 maximum # of doors that may be replaced.

Fare evasion

- Operator invests $d_c = (d_1, d_2, d_3, d_4, d_5)$. (Constraints)
 - Fare evasion costs (partly mitigated by fines).
- $\phi(d_c)$ evaders proportion. $q(d_1)$ inspection proportion.
 - $1 \phi(d_c) \longrightarrow N_1$ civic customers pay ticket.
 - $\phi(d_c)[1-q(d_1)] \longrightarrow N_2$ not pay, not caught (loss v_c).
 - $\phi(d_c)q(d_1) \longrightarrow N_3$ do not pay but caught (income f_c).
- **Colluders** see security investments d_c (Seq D-A).
- Fare evasion proportion $r \rightarrow r'$, inspection proportion $q_A(d_1)$
 - $1 r' \rightarrow M_1$ pay, abortion (income v_c).
 - ▶ $r'(1-q_A(d_1)) \rightarrow M_2$ not pay, not caught (loss v_c).
 - $r'q_A(d_1) \rightarrow M_3$ not pay, caught (income f_c).
- Operational costs, including preparation costs q_c

$$c_{A_1} = v_c(M_2 - M_1) - f_c M_3 - rq_c M.$$

Pickpocketing

- Operator invests $d_p = (d_5, d_6, d_7, d_8)$. (Constraints)
 - Decrease in business level $b b_0$.
- ▶ **Pickpockets** see security investment *d_p* (Seq D-A).
- Theft level $t \rightarrow t'$, abortion τ , success ξ , detention heta

Operational costs, including preparation costs q_p

$$c_{A_2}=-q_pt-f_pt_2+\ell t_3.$$

Both colluders and pickpockets risk prone in benefits

$$u_{A_i}(c_{A_i}) = \exp(k_{A_i} \cdot c_{A_i}), \ k_{A_i} > 0, \ i = 1, 2.$$

17/24

Solving the bithreat problem

Operator benefit/cost balance

$$c_D(N_1, N_2, N_3, M_1, M_2, M_3, d, b) =$$

- $v_c(N_2 + M_2) + f_c(N_3 + M_3) - \sum_{k=1}^8 q_k d_k - (b_0 - b).$

Operator risk averse to increase in income,

$$u_D(c_D) = -\exp(-k_D \cdot c_D).$$

Evaluate security plan d maximizing expected utility

$$\psi_D(d) = \int \left\{ \iint \left[\sum_{\substack{N_1, N_2, N_3 \\ M_1, M_2, M_3}} p_{M_1 M_2 M_3 d_c} \cdot p_{N_1 d_c} \, p_{N_2 d_c} \, p_{N_3 d_c} \cdot u_D(c_D) \right] \right\}$$

 $\left. p_D(t|d_p) p_D(b|t) \mathrm{d}t \mathrm{d}b \right\} \times p_D(r|d_c) \mathrm{d}r.$

A D F A B F A B F A B F

A case study

- Colluders and pickpockets do not make common cause.
- ► Cascading effect → N. of customers affected by pickpockets through business level → influence colluder's decision.
- A subnetwork of 4 stations, with models like above, related by resource constraints and value aggregation.

Station	Passengers	Budget (k€)	Fare evasion	Pickpocketing	Constraints
1	1,000,000	30-100	Moderate	Moderate	
2	1,000,000	30-100	Moderate	Moderate	_
3	1,000,000	30-100	High	Moderate	1 inspector
4	5,000,000	50-100	Moderate	High	1 guard
Total	8,000,000	120-200	_	—	_

• Resource upper bounds $\bar{d}_k = 4$, k = 1, 2, 3, 5, 6 and $\bar{d}_7 = 8$.

At most, two units of each countermeasure at a single station.

Results

(日)、

э

20 624

	4	4	4	4	4	4	4	4	Invest.	Fines	Loss fare	Loss pick.
	a_1	a_2	a ₃	<i>a</i> ₄	a_5	a_6	a_7	a_8	(-)	(+)	(-)	(-)
S_1	0	0	0	—	0	1	0	—	35,000	_	101,938	42,595
S_2	0	0	0	—	0	1	0	—	35,000	—	114,280	33,757
S_3	1	0	1	—	0	0	0	—	65,000	162,688	234,401	127,994
S_4	0	0	2	—	0	1	0	—	65,000		394,731	78,290
Total	1	0	3	1	0	3	0	0	200,000	162,688	845,170	282,636

- Door guards, cameras and awareness plan not worth it.
- Involve ticket clerks in observation tasks.
- Annual expected losses 1,225,118 € (around 2,5 M€ otherwise).

Conclusions

<□ > < □ > < □ > < □ > < □ > < □ > < □ > □ 21/24

- ARA methodology for protecting multiple sites from multiple uncoordinated threats.
- Sequential Defend-Attack model for each attacker and site.
- Models coordinated by resource constraints and value aggregation over various sites and threats.
- ► Case study in metro security → fare evasion and pickpocketing (cascading effect).

(日)、

22024

э

- Multiple defenders and their eventual coordination.
- Coordination of attacks and their rationality type.
- Further interactions among defenders and attackers.
- Mobility of resources.

Acknowledgments

- This project has received funding from the European Union's Seventh Framework Programme for Research, Technological Development and Demonstration under grant agreement no 285223.
- Work has been also supported by the Spanish Ministry of Economy and Innovation program MTM2011-28983-C03-01 and the Government of Madrid RIESGOS-CM program S2009/ESP-1685.
- We are grateful to TMB experts and stakeholders for fruitful discussion about modeling issues.

Bibliography

<□ > < □ > < □ > < □ > < □ > < □ > < □ > □ 24/24→

- Ríos Insua, D., J. Cano, M. Pellot, R. Ortega. 2014. Current Trends in Bayesian Methodology with Applications, chap.
 From Risk Analysis to Adversarial Risk Analysis. CRC Press, To appear.
- Ríos Insua, D., J. Cano, M. Pellot, R. Ortega. 2014. Multithreat Multisite Protection: A Case Study in Metro Security. *In preparation*.
- Ríos Insua, D., J. Ríos, D. Banks. 2009. Adversarial risk analysis. *Journal of the American Statistical Association* 104(486) 841–854.