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General overview

I ARA (Ŕıos Insua et al., 2009) approach for multithreat
problem over one site

I Uncoordinated attacks.
I Outcome of attacks might affect each other.

I Extension to multiple sites (Ŕıos Insua et al., 2014b)

I Sequential Defend-Attack for each site/threat.
I Models related by resource constraints and value aggregation.
I No particular spatial structure.

I Case study: metro network protection against

I Fare evasion. (Ŕıos Insua et al., 2014a)
I Pickpocketing by a team.
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1. Multithreat protection
for one site
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What is ARA?

I ARA builds decision analysis model for Defender, who
forecasts actions of her intentional adversaries.

I Once with this knowledge, she decides optimal defense against
attacks.

I Sequential Defend-Attack model.

I Defender first chooses a portfolio of countermeasures
I After observing it, Attacker decides his attack.
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Description of problem

I Basic multithreat protection problem

A1 D A2

S1 S2

cA1 cD cA2

uA1 uD uA2

I Defender aims at finding optimal defense d∗.

I Consequences evaluated through utility uD(d ,s1, . . . ,sm).
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Optimal solution

I Assume cond. ind. Si |d ,ai −→ pD(si |d ,ai ).

I Obtain expected utility, given the attacks

ψD(d |a1, . . . ,am) =
∫
· · ·
∫

uD(d ,s1, . . . ,sm)pD(s1|d ,a1) · · ·pD(sm|d ,am)ds1 . . .dsm.

I Suppose Defender able to build models pD(ai |d).

I Assume cond. ind. of a1, . . . ,am given d . Compute

ψD(d) =
∫
· · ·
∫

ψD(d |a1, . . . ,am)pD(a1|d) · · ·pD(am|d)da1 . . .dam,

and solve
d∗←−max

d∈D
ψD(d).
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Assessment of Attacker’s intentions

I To obtain pD(ai |d), solve each attacker’s problem (E.U. max.)

a∗1(d) = arg max
a1∈A1

∫
uA1(a1,s1)pA1(s1|d ,a1)ds1.

I Defender lacks knowledge
(
uA1(·),pA1(s1|·)

)
→
(
UA1 ,PA1

)
.

I Approximate p̂D(ai |d) through Monte Carlo simulation.

I Assessment of PA1
(·) typically based on pD(·)

I Dirichlet distribution (process) for discrete (continuous).

I For UA, information about Attacker’s interests

I Aggregate with weighted measurable value function.
I Assume risk proneness.
I Distributions over weights and risk proneness coefficients.
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Possible generalizations

A1 D A2

S1 S2

cA1 cD cA2

uA1 uD uA2

A1 D A2

S1 S2

cA1 cD cA2

uA1 uD uA2

I (left) If simultaneous, but uncoordinated attacks a1, . . . ,am
jointly detrimental in face of d

pD(s1|d ,a1) · · ·pD(sm|d ,am)→ pD(s1|d ,a1, . . . ,am) · · ·pD(sm|d ,a1, . . . ,am).

I (right) Cascading effect between results of attacks

pD(s1|d ,a1)pD(s2|d ,a2)→ pD(s1|d ,a1,s2)pD(s2|d ,a2).
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2. Multithreat multisite
protection
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General methodology

1. Deploy one of previous models over each site.

2. Resource constraints coordinate models.

3. Aggregate value at nodes applying utility function.

4. Defender deploys dj over site j , fulfilling g(d1, . . . ,dn) ∈D .

5. i-th Attacker performs aij over j-th site, satisfying hi (ai ) ∈Ai .

6. Interaction yields random results Sij ∈Sij .

7. Defender aggregates results through uD(d ,s1, . . . ,sm).

8. To find optimal defense strategy d ∗, compute

ψD(d |a1, . . . ,am) =
∫
· · ·
∫

uD(d ,s1, . . . ,sm)pD(s11|d1,a11) · · ·pD(smn|dn,amn)ds1 . . .dsm.

ψD(d ) =
∫
· · ·
∫

ψD(d |a11, . . . ,amn)pD(a11|d1) · · ·pD(amn|dn)da11 . . .damn
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3. Case study
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Influence diagram
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Description of problem

I Metro operator D protecting from:

I Fare evasion. Two types of evaders:

I Standard (standard random process).
I Colluders A1 (ARA; explicitly modeling intentionality).

I Pickpockets A2. Organized group. Security & image costs.

Role
Features

Fare Pick
d1 Inspector Prev./rec. — Inspect customers. Collect fines
d2 Door guard Prev. — Control access points
d3 Door Prev. — New secured automatic access doors
d4 Ticket clerk Prev. — Current little implication in security
d5 Guard Prev. Prev./rec. Patrol along the facility
d6 Patrol — Prev./rec. Trained guard+security dog
d7 Camera — Prev. Complicate pickpocket actions
d8 Campaign — Prev. Alert users about pickpockets
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Feasible portfolios

I Associated unit costs q1,q2,q3,q5,q6.q7.

I d4 ∈ {0,1} (d4 = 1→ clerks involved, incurred costs q4).

I d8 ∈ {0,1}, (d8 = 1→ operator invests q8).

q1d1 +q2d2 +q3d3 +q5d5 +q6d6 +q7d7 +q8d8 ≤ B,

d1,d2,d3,d5,d6,d7 ≥ 0,

d1,d2,d3,d5,d6,d7 integer,

d3 ≤ d̄3,

d4,d8 ∈ {0,1},

d̄3 maximum # of doors that may be replaced.
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Fare evasion

I Operator invests dc = (d1,d2,d3,d4,d5). (Constraints)

I Fare evasion costs (partly mitigated by fines).

I φ (dc) evaders proportion. q(d1) inspection proportion.

I 1−φ(dc)−→ N1 civic customers pay ticket.
I φ(dc)[1−q(d1)]−→ N2 not pay, not caught (loss vc).
I φ(dc)q(d1)−→ N3 do not pay but caught (income fc).

I Colluders see security investments dc (Seq D-A).

I Fare evasion proportion r → r ′, inspection proportion qA(d1)

I 1− r ′→M1 pay, abortion (income vc).
I r ′(1−qA(d1))→M2 not pay, not caught (loss vc).
I r ′qA(d1)→M3 not pay, caught (income fc).

I Operational costs, including preparation costs qc

cA1 = vc(M2−M1)− fcM3− rqcM.
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Pickpocketing

I Operator invests dp = (d5,d6,d7,d8). (Constraints)

I Decrease in business level b−b0.

I Pickpockets see security investment dp (Seq D-A).

I Theft level t→ t ′, abortion τ, success ξ , detention θ

I 1− (1− τ)ξ → t1 not succeed.
I (1− τ)ξ θ → t2 succeed, but caught (fine fp).
I (1− τ)ξ (1−θ)→ t3 succeed, not caught (loot `).

I Operational costs, including preparation costs qp

cA2 =−qpt− fpt2 + `t3.

I Both colluders and pickpockets risk prone in benefits

uAi
(cAi

) = exp(kAi
· cAi

), kAi
> 0, i = 1,2.
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Solving the bithreat problem
I Operator benefit/cost balance

cD(N1,N2,N3,M1,M2,M3,d ,b) =

−vc(N2 +M2) + fc(N3 +M3)−
8

∑
k=1

qkdk − (b0−b).

I Operator risk averse to increase in income,

uD(cD) =−exp(−kD · cD).

I Evaluate security plan d maximizing expected utility

ψD(d) =
∫ {∫∫ [

∑
N1,N2,N3
M1,M2,M3

pM1M2M3dc ·pN1dc pN2dc pN3dc ·uD(cD)

]

pD(t|dp)pD(b|t)dt db

}
× pD(r |dc)dr .
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A case study

I Colluders and pickpockets do not make common cause.

I Cascading effect → N. of customers affected by pickpockets
through business level → influence colluder’s decision.

I A subnetwork of 4 stations, with models like above, related by
resource constraints and value aggregation.

Station Passengers Budget (ke) Fare evasion Pickpocketing Constraints

1 1,000,000 30–100 Moderate Moderate —
2 1,000,000 30–100 Moderate Moderate —
3 1,000,000 30–100 High Moderate 1 inspector
4 5,000,000 50–100 Moderate High 1 guard

Total 8,000,000 120–200 — — —

I Resource upper bounds d̄k = 4, k = 1,2,3,5,6 and d̄7 = 8.

I At most, two units of each countermeasure at a single station.

19/24



Results

d1 d2 d3 d4 d5 d6 d7 d8
Invest. Fines Loss fare Loss pick.

(−) (+) (−) (−)

S1 0 0 0 — 0 1 0 — 35,000 — 101,938 42,595
S2 0 0 0 — 0 1 0 — 35,000 — 114,280 33,757
S3 1 0 1 — 0 0 0 — 65,000 162,688 234,401 127,994
S4 0 0 2 — 0 1 0 — 65,000 — 394,731 78,290

Total 1 0 3 1 0 3 0 0 200,000 162,688 845,170 282,636

I Door guards, cameras and awareness plan not worth it.

I Involve ticket clerks in observation tasks.

I Annual expected losses 1,225,118 € (around 2,5 M€
otherwise).
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Conclusions

I ARA methodology for protecting multiple sites from multiple
uncoordinated threats.

I Sequential Defend-Attack model for each attacker and site.

I Models coordinated by resource constraints and value
aggregation over various sites and threats.

I Case study in metro security → fare evasion and
pickpocketing (cascading effect).
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Future research

I Multiple defenders and their eventual coordination.

I Coordination of attacks and their rationality type.

I Further interactions among defenders and attackers.

I Mobility of resources.
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