

UNIVERSITÀ DEGLI STUDI DI TRENTO

An empirical validation of the CVSS industrial standard

Luca Allodi, Fabio Massacci University of Trento - http://securitylab.disi.unitn.it

Trento

- 3rd year Phd Student
- MsC Information
 Security
- Phd work: two bits
 - 1. CS Technical bit
 - 2. Economic modeling bit
 - In Durham working with Prof. Julian Williams for characterization of cybercrime markets http://disi.unitn.it/~allodi

- Vulnerabilities: CIO perspective
 - Compliance and rules
- A medical equivalent of current practices
- Policy effectiveness measure:
 - Case control study for vulnerabilities and exploits
 - Results
 - Validation (according to available time)

Vulnerabilities: a CIO Perspective

- 50k+ vulnerabilities in NVD
- My Software has a vulnerability: should I worry?
 - Published somewhere at BlackHat, DefCon, Slashdot, whatever.
- The fanatical answer is "I should, for each and every one"
- The actual answer is "For this one, I just can't"
 - Technical Reasons
 - May not be technically fixable →integrated legacy sw may break
 - Even if expert to fix is there → she may have other tasks: relative priority?
 - Already planned upgrade in 3 months → why not just wait?
 - Budget Reasons
 - Money already allotted → again delay or stop other tasks
 - Compliance Issues
 - "It's the law" → zilions of competing laws (e.g. Internet crimes, building safety, health insurance contribution, etc. etc.)
 - Paying a fine (later) may be cheaper than deploying a fix (now)
- Need to Prioritize: "Worry now", "Worry later", "Life's too short"
 - Cannot tell CFO/CEO "I need extra money" → what is value for money?

Vulnerabilities: a Compliance Perspective

- Listen to the U.S. Government....
 - US Cyber Security Order (Press release Feb'2013)
 - "NIST will work collaboratively with critical infrastructure stakeholders to develop the framework relying on existing international standards, practices, and procedures that have <u>proven to be effective</u>"
 - U.S. NIST SCAP Protocol v1.2(Draft Jan 2012)
 - "Organizations should use <u>CVSS base scores</u> to assist in <u>prioritizing</u> the remediation of known security-related software flaws based on the <u>relative severity of the flaws</u>."
 - PCI-DSS v2 (June 2012)
 - "<u>Risk rankings</u> should be based on industry best practices. For example, criteria for ranking —Highlrisk vulnerabilities may include a <u>CVSS base score of 4.0 or above</u>"
 - U.S. Government Configuration Baseline (USGCB)
 - Supported by the industry → Rapid7, Telos, VmWare, Symantec, Qualys, Retina etc. etc.
- Conclusion: fix all vulnerabilities with high or medium CVSS score
 - But how this is "proven to be effective"?

- CVSS (2.0) is an assessment of how the vulnerability can impact the system
- Based on expert assessments to evaluate:

Zooming in on Base Metrics

CVSS.base = f(Exploitability) x g(Impact)

Exploitability

- Access Vector (local, adj, network)
- Access Complexity (high, medium, low)
- Authentication (multiple, single, none)
- Impact (High, Medium, Low)
 - Confidentiality, Integrity, Availability
- Basically it is a "Clinical Evaluation"
 - "clinical examination is the process by which a medical professional investigates the body of a patient for signs of disease" (Wikipedia)

Comparing Clinical Tests

I HAVE A VULNERABILITY

- Is it of high impact?
 - Confidentiality affected?
 - Integrity?
 - Availability?
- Locally or from the network?
- **-** ...
- Overall score HIGH → your CVSS doctor says "patch your system"

I SEE DOUBLE

- Is it of high impact?
 - Primary gaze affected?
 - Left and right?
 - Downward and upward?
- Is it permanent or transient?
- **...**
- Overall score HIGH → your
 CVSS doctor says "brain surgery" → Ehm.. Sure..?

Tests and Risks: a practical question

- A clinical test must be matched to the risk
 - Binocular diplopia and no additional evidence → 42% recovered without treatment
 - Binocular diplopia AND intracranial lesion → o% recovered without treatment
 - Nolan "Diplopia" B. J. Ophtalm. 1966
- What the CIO would like to know:
 - IF HIGH CVSS listed by Sec. Config. Manager and Metasploit finds it → fix it and decrease risk of successful attacks by +15%
 - IF fix all remaining HIGH listed by Sec. Config. Manager but no additional evidence → risk decreses only by 3%
 - \rightarrow Is +3% worth the extra money?

Research goal

- A methodology and practical criteria to prioritize security activities
 - "IF we mitigate vulnerabilities with feature XTHEN risk of attacks decreases by x%"
- Think of car accidents:
 - You can't prove that if you wear a safety belt you will not die
 - But still, you want statistical evidence that using a belt improves your chances of surviving in a car accident
- Same with vulnerabilities:
 - Fixing a vulnerability will not assure you will not be hacked
 - But it improves your chances of not being hacked
- An important criterion is only "foresight" features
 - Vulnerabilities should be characterized by features that can be checked *before* an attack takes place
 - CVSS is ok → clinical expert assessment
 - Presence of Proof of Concept in Exploit DB → symptom
 - Among "Attacked vulns" in AV report → hindsight
 - Hindsight information should only be used to validate foresight prediction

Attack scenarios: scope of work

Victim is THE Target

- Can mitigate this risk (IDSs, DLP, other Remediation strategies, insurance, etc.)
- But cannot control it
- → speaking of "risk decrease by X%" doesn't make sense
- Victim is only ONE of the Targets
 - Automated exploitation, phishing sites etc.
 - GOOGLE: 80% of attacks are of this nature
 - M. Rajab et al., Google Tech Report 2011
 - For these threats \rightarrow "risk decrease by x%" makes sense
 - We do not focus on Black Swan events
 - ightarrow We focus on the most common threats

_earning from Medicine

How do you "prove" that

- Giving up smoking reduces risk of lung cancer?
- Safety belts reduce risks of deaths?
- You can't run a "controlled" experiments
 - Can't ask people to start smoking and see if they die
 - Can't ask people to run vulnerable software and see if they get hacked
- So... you do a "case-controlled" study
 - Doll & Bradfor Hill, British Medical Journal 1950 (&1970) (Smoking → Lung Cancer)
 - 1. Explanatory variable: Smoking habit
 - 2. Cases: people with lung cancer
 - 3. Possible confounding variables: Age, Sex, Social Status, Location
 - 4. Controls: random people with same characteristics of confounding variables
- Is there a (statistical) difference between your cases and a control population with the same characteristics?

Our cases and controls

Population to build the control groups	What's there	
NATIONAL VULNERABILITY DB (the "universe")	45K+ vulns, 16K types of sw/versions etc.	
EXPLOIT DB (Proof-of-Concept exploits is published by security researchers)	8K+ vulns, (~6k sw)	
EKITS (our info on 90+ exploit kits adverts from the black markets expanding Contagio's table) 2/3 of End Users Threats are from there according to Google (2011)	101 vulns (46 sw)	
Our Cases (the lung cancer patients, deads in accidents)	What's there	
SYMANTEC's Threat Explorer Browser/Plugins 14% – Server 22% – App. 17% - Windows 13% - Other OS 5% - Developer 5% - Business 7% - Unclassified 17%	1K+ vulns with at least 1 attack in the wild (~600 sw)	

Map of Vulnerabilities

Glimpse of the problem

What makes CVSS so inaccurate?

EDB

- Risk (CVSS)= Impact x Likelihood
 - **CVSS** Likelihood = **Exploitability**
- Everything is exploitable \rightarrow CVSS lacks of a real characterizatio n of likelihood of exploitation

8

10

10

Need for the case control study

- Cannot use data as-is to draw conclusions on CVSS
 - NVD/EDB may list software almost nobody use
 - Sw in SYM \rightarrow 568, sw in EDB \rightarrow 5.819, sw in NVD \rightarrow 16.399
 - E.g. a Joomla expansion module
 - SYMantec may focus on a subset of vulns
 - E.g. Windows vulnerabilities in SYM more frequent than in NVD
 - E.g Vulnerabilities in SYM usually have complete impacts on CIA
- So we run a case-controlled experiment
 - Cases \rightarrow 1266 vulnerabilities with attacks in the wild
 - Controls
 → Random population of same size from EDB,NVD or EKITS with the same control variables
 - Bootstrapping → repeat 400 times and see the results

Our controls

- Smoking study
 - Controls for Age, Sex, Social Status, Location
- We control for
 - Year of Vulnerability → must be in SYM
 - Date of exploit may condition the probability of being detected by Symantec
 - Software Type → must be in SYM
 - Symantec sells technology to protect software typically used by its costumers
 - Confidentiality, Integrity, Availability Impact
 - Symantec may detect mainly vulnerabilities that, for example
 - Allow for execution of arbitrary code
 - Allow privilege escalation/Data Leakage
 - While certain type may remain largely ignored
 - E.g. attacks against Availability

Control implementation

- Case (attacked vulnerability):
 - CVE-2010-3962 (use-after-free vulnerability in MS IE 6,7,8)
 - Year=2010
 - Confidentiality =C, Integrity=C, Availability=C
 - Vendor=Microsoft, Software = ie
- Control (vulnerabilities similar to attacked ones):
 - Select randomly 1 out of:
 - 5 from EKITS

Repeat 400 times (bootstrapping)

- 7 from EDB
- 37 from NVD
- Repeat for all 1266 cases of attacked vulnerabilities
 - See what values of CVSS we get
 - See how many times you find an attacked vulnerability
- Repeat all above for N times to select different samples

Result of the Experiment

Result of each Nth sample is a latin square

	In SYM	Not in SYM
Value of Marker for <u>Risky Condition</u> (e.g. HIGH CVSS and vuln in EKITS)	Sick people correctly detected	Healthy people wrongly flagged
Value of Marker for <u>Not Risky</u> <u>Condition</u>	Sick people not detected by the test	Healthy people marked as such by the test

- We are interested in 3 things
 - Sensitivity and specificity → assess the quality of the test
 - Risk reduction \rightarrow tells the CIO what to do
 - Variability due to randomness \rightarrow confidence intervals

How to evaluate the marker

- - HIGH → the test correctly identifies exploited vulns
 - LOW \rightarrow lots of "sick people" undetected
- Specificity → true negatives vs all healthy people
 - HIGH → the test correctly identifies non exploited vulns
 - LOW \rightarrow lots of "healthy people" flagged

Results & Statistical validation

• Output of experiment:

	In SYM	Not in SYM
CVSS Med + High	Х	Y
CVSS Low	К	J

- Sensitivity=Pr(X|SYM) = X/(X+K) <- SYM by column</p>
- Specificity=Pr(J|not SYM) = J/(J+Y) <- Not SYM by column</p>
- X,Y,K,J may be small (<5) → Chi Square and other tests not suitable
 - We use Fisher's Exact test

A"Generate Panic" test

A"Generate Panic" test

- Sensitivity: is High/Med CVSS good marker for v∈SYM?
- Specificity: is Low CVSS good marker for v∉SYM?
- Fisher test: significance with p< 0.05(*) p<0.01(**)

Test's Risk factors	Sensitivity	Specificity
None (Patch Everything)	100%	0%
CVSS High+Med	88%	16%
CVSS + PoC (EDB)	97%(**)	20%(**)
CVSS + Bmar (EKITS)	100%(*)	23%(*)
3BT: Down Syndrome	69%	95%
PSA: Prostate Cancer	81%	90%

From Experiment to Advice

- All this is very nice but... what about the CIO?
 - "If I patch vulnerabilities with features X would this reduce my risk of getting attack?"
- Compute answer from same table but by row
 - How good is our Assessment (CVSS etc) in predicting the future (Bayes Theorem)

 $MarkedHigh \in SYM$

 $Risk(MarkedHigh) = \frac{MarkedHigh \in SIM}{MarkedHigh \in SYM + MarkedHigh \notin SYM}$

	in SYM	Not in SYM	
<u>Marked HIGH by</u>	Vuln marked for a patch	Vuln marked for a patch	
<u>CVSS+other information</u>	that were attacked	that were not attacked	
<u>Marked LOW by</u>	Dangerous vuln not	Not Dangerous and not	
<u>CVSS+other information</u>	marked for a patch	marked	

Risk Factor	RR	95% C.I.
CVSS >= 6	4%	-5% ; 12%
CVSS >= 6 + PoC	42%	38%;48%
CVSS >= 6 + BMar	80%	80% ; 81%
CVSS >= 9	8%	1% - 15%
CVSS >= 9 + PoC	42%	36%;49%
CVSS >= 9 + Bmar	24%	23%; 29%

Validation in the wild: examples

- WINE -> Symantec dataset reporting actual attacks in wild:
 - count of exploitation attempts worldwide
 - PA (Potential of Attack) = log(attacks)

Risk factor	BROWSER vulns		WINDOWS vulns	
	%Vulns	PA red.	%Vulns	PA red.
None	100%	5	100%	6.1
CVSS >= 4	98.8%	5	97.3%	6.1
CVSS >=4 + PoC	4.1%	5	<u>16.7%</u>	<u>6.1</u>
CVSS >=4 + BMarket	<u>1%</u>	<u>4.8</u>	1.2%	4.8