

# Scenario Based Adversarial Risk Analysis on Transport Infrastructures

J. Cano<sup>1</sup> D. Ríos Insua<sup>2</sup> A. Tedeschi<sup>3</sup> U. Turhan<sup>4</sup>

<sup>1</sup>URJC

<sup>2</sup>Royal Academy of Sciences, Spain

<sup>3</sup>DeepBlue Srl, Italy

<sup>4</sup>Anadolu University, Turkey

XXII MCDM. Málaga. June 17, 2013



Security Economics: Socio economics meets security





Description of the problem

Defender's problem

Attacker's problem

Results





・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

3/21

# 1. Description of the problem

## General overview



- Unlawful access to ATC Tower.
- ATC Tower attached to terminal building.
  - Gate located in terminal main lounge.
  - Covered by CCTV cameras.
- Attackers plan to enter ATC Tower, taking hold of air traffic.
- After first security checks, they could enter ATC Tower, capture ATCOs and interfere with air traffic.





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < 5/2t</p>

### Relevant elements



- ► "Prev. measures" and "Countermeasures", Defender's first and second decisions, d<sub>1</sub> ∈ D<sub>1</sub>, d<sub>2</sub> ∈ D<sub>2</sub>.
- "Attacker decision" undertaken by terrorists,  $a \in \mathscr{A}$ .
- "Result", only relevant uncertainty,  $s_1 \in \mathscr{S}_1$  (depends on  $(d_1, a)$ ),
- ► "Final Result", s<sub>2</sub> ∈ S<sub>2</sub> (liberate ATC Tower, cost what it may).
- "Cost airport" depends on  $(d_1, s_1, d_2, s_2) \longrightarrow$  utility  $u_D$ .
- "Cost attacker", depends on  $(a, s_1, d_2, s_2) \longrightarrow$  utility  $u_A$ .



(日) (四) (三) (三) (三) (3/20)

# 2. Defender's problem



- Cameras (preventive),  $(x_1, c_1)$ .
- Metal detectors (preventive),  $(x_2, c_2)$ .
- ► X-ray devices (preventive), (x<sub>3</sub>, c<sub>3</sub>).
- Airport police (preventive/recovery),  $(x_4, c_4)$ .
- ► Airport private security (preventive/recovery), (x<sub>5</sub>, c<sub>5</sub>).
- Special police force (government, recovery).

Countermeasures  $(x_1, x_2, x_3, x_4, x_5)$  deterrent aspect, reducing Attacker's probability of success. Recovery measures aim at minimizing consequences of attack, recovering from it.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

## Defender's dynamics



• Invest  $(x_1, x_2, x_3, x_4, x_5)$ , incurring in a cost

$$c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4 + c_5x_5$$
.

- Observe terrorists' attack, and (if successful) take appropriate recovery measures.
  - Try to recover as soon as possible, no matter the costs.
- ► Face consequences of attack.
  - Cost of a life, c<sub>life</sub>.
  - ► Flight diversion/cancellation, *c*<sub>div-cancel</sub>.
  - Image and political costs,  $c_{\text{image}}$ . Difficult to assess.
- Get utility (depends on costs of preventive measures, and possible damages/casualties caused by attack).
  - Assume risk aversion  $u_D(c_D) = -\exp(k_D \cdot c_D)$ .

#### Solving Defender's problem

1. Compute maximum utility action at node "Countermeasures"

$$d_2^*(d_1, s_1) = \arg \max_{d_2 \in \mathscr{D}_2} u_D(d_1, s_1, d_2).$$

• Need  $u_D(d_1, s_1, d_2), \forall (d_1, s_1).$ 

2. Compute expected utility at node "Result"

$$\psi_D(d_1,a) = \int u_D(d_1,s_1,d_2^*(d_1,s_1)) p_D(S_1 = s_1|d_1,a) ds_1$$

• Need 
$$p_D(S_1 = s_1 | d_1, a), \forall (d_1, a).$$

3. Compute expected utility at node "Attacker decision"

$$\psi_D(d_1) = \int \psi_D(d_1, a) p_D(A = a | d_1) da, \forall d_1.$$

▶ Need  $p_D(A = a | d_1)$  (key point, solve Attacker's problem!).

4. Find max. expected utility decision at node "Prev. measures"

$$d_1^* = \arg \max_{d_1 \in \mathscr{D}_1} \psi_D(d_1).$$

3



# 3. Attacker's problem

#### Possible attacks



12/21

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ─ □



- Two possibilities:
  - Terrorists decide to attack ATC Tower.
    - ▶ 1-5 terrorists (influence on attack success and impact).
  - They decide to do nothing.

## Attacker's dynamics



・ロト ・ 日本 ・ 日本 ・ 日本

3

- See security measures deployed  $(x_1, x_2, x_3, x_4, x_5)$ .
- Decide attack  $a \in \mathscr{A}$ .
- Face operational costs.
  - In general, little preparation needed.
- Suffer consequences of recovery measures.
- Get utility (depends on operational costs, revenues from successful attack and recovery measures).

#### Consequences for Attacker



(日) (同) (三) (三) (三) (4/2t)

- Upon launching an attack to ATC Tower
  - Take control over air traffic operations.
    - Panic situation.
    - Force authorities to some negotiation.
    - Cause as much economic and political damage to airport and government.
    - Not all directly monetized, but high utility for Attacker.
  - Terrorists' lives lost.
    - For some terrorists (suicide), not an issue.
- Attacker's utility aggregates both aspects

 $u_A(a, s_1, d_2) = w_1 u_1$  (revenues) +  $w_2 u_2$  (casualties).

#### Uncertainty about Attacker's elements



- Defender has uncertainty about
  - Attacker's utility  $\longrightarrow U_A(a, s_1, d_2)$ , typically through

$$u_A(c_A) = \exp(k_A \cdot c_A), \ k_A \sim \mathscr{U}(0, K_A).$$

- ► Attacker's beliefs on success of attacks → P<sub>A</sub>(S<sub>1</sub>|d<sub>1</sub>, a). We use beta distribution centered around Defender's own beliefs.
- Attacker's beliefs on Defender's response  $\longrightarrow P_A(D_2|d_1, a, s_1)$ . Typically, Attackers expect Defender to respond similarly to first stage.
- Uncertainty propagated to compute  $p_D(A = a|d_1)$ .

#### Solving Attacker's problem

1. Compute expected utility at node "Countermeasures"

$$\Psi_A(d_1, a, s_1) = \int U_A(a, s_1, d_2) P_A(D_2 = d_2 | d_1, a, s_1) dd_2.$$

▶ Need  $U_A(a, s_1, d_2)$ ,  $\forall (a, s_1, d_2)$ ,  $P_A(D_2 = d_2 | d_1, a, s_1)$ ,  $\forall (d_1, a, s_1)$ .

2. Compute expected utility at node "Result"

$$\Psi_{\mathcal{A}}(d_1,a) = \int \Psi_{\mathcal{A}}(d_1,a,s_1) P_{\mathcal{A}}(S=s_1|d_1,a) ds_1.$$

• Need  $P_A(S_1 = s_1 | d_1, a), \forall (d_1, a).$ 

3. Compute maximum utility action at node "Attacker decision"

$$A^*(d_1) = \arg \max_{a \in \mathscr{A}} \Psi(d_1, a), \, \forall d_1.$$

4. Defender's predictive density over attacks given by

$$\int_0^a p_D(A=x|d_1) dx = \Pr(A^*(d_1) \le a).$$

Monte Carlo estimation of  $p_D(A = x | d_1)$ 





# 4. Results

# Case study: small airport



- Southeastern European small-size international airport.
- International and domestic flight operations.
- Single runway flight operations.
- ▶ Runway 3000 × 45 meters.
- Runway lighted for night flights.
- Radio navigation aids.



(日) (四) (日) (日)



| Measure          | Max | Cost (€)/unit | Deterrence    | Detection          |
|------------------|-----|---------------|---------------|--------------------|
| Cameras          | 4   | 450/850       | Moderate-high | Moderate (persons) |
| Metal detectors  | 1   | 6,500         | Moderate      | High (material)    |
| X-ray devices    | 1   | 90,000        | Moderate      | High (material)    |
| Police           | 5   | 1,550/1,750   | High          | High (persons)     |
| Private security | 10  | 1,300         | High          | Moderate (persons) |
| Special force    | 20  | Per operation |               |                    |

- ► Estimated investment budget 100,000 €.
- Different scenarios depending on:
  - $p_D(S = 1 | a = \{1, 2, 3, 4, 5\}, d_1).$
  - ► *k*<sub>D</sub> (forcefulness in fighting against terrorists).
  - Parametrization of attack duration and consequences (Image/political costs).

## Main conclusions



- Upon perceived low-level threats, authorities tend to underestimate risk.
  - Attackers see a breach in security (more attackers).
  - Great impact can be caused even with low-profile attacks.
  - Low-cost preventive measures and well-trained personnel could deter attackers or minimize their number.
- Under scenario of high probability of attack.
  - Authorities tend to invest on expensive (sometimes sensationalist and ineffective) measures.
  - Set up security protocols for personnel increase their efficiency.