

Adversarial and Non-Adversarial Risk Analysis for Security over Multiples Sites

J. Cano¹ D. Ríos Insua²

¹URJC

²Royal Academy of Sciences, Spain

XXVI EURO. Rome. July 2, 2013

Security Economics: Socio economics meets security

Outline

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

2/32

э

Fare evasion Solving only for standard evaders Solving only for colluders Solving both problems simultaneously

Pickpocketing

Fare evasion and pickpocketing over multiple stations

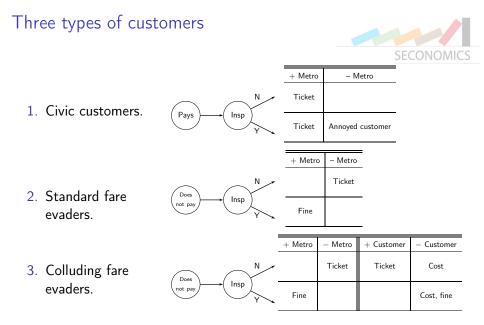
General overview

3/32

Э

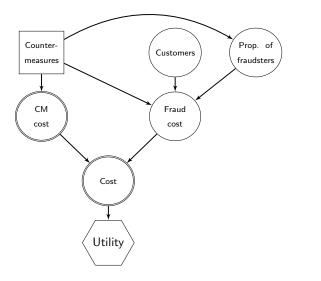
(a)

- One station
- Two threats.
 - Fare evasion
 - Pickpocketing by a team.
 - Both threats simultaneously.
- Extension to more than one station.



1. Fare evasion

Description of problem


- Two types of evaders:
 - Standard (standard random process).
 - Colluders (ARA; explicitly modelling intentionality).
- Five countermeasures.
 - ▶ Inspectors (preventive/recovery), (*x*₁, *c*₁).
 - Security guards (*bouncers*), usually outsourced (preventive), (x₂, c₂).
 - Guards, working solo or in pairs (preventive/recovery), (x_3, c_3) .
 - Automatic access doors (preventive), $(x_4 \le n_4, c_4)$.
 - ▶ Metro officers (preventive), (*x*₅, negotiation).
- In general, the more resources, the less fare evasion will be. Also, the more inspectors, the more customers checked and, possibly, the more fines collected.

Solving only for standard evaders

> This is a 'standard' risk management problem

Solving only for standard evaders (cont.)

1

- Operator invests $c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4 + x_5$. (Constraints)
- ▶ p(x) proportion of standard evaders. q(x₁) proportion of customers inspected.
 - $1-p(x) \longrightarrow N_1$ civic customers pay ticket.
 - ▶ $p(x)[1-q(x_1)] \longrightarrow N_2$ not pay ticket, not caught (loss t).
 - $p(x)q(x_1) \longrightarrow N_3$ do not pay ticket but are caught (income f).

$$c_D(N_1, N_2, N_3) = 0 \times N_1 - t \times N_2 + f \times N_3 - \sum_{i=1}^4 c_4 x_4 - x_5.$$

► Evaluate security plan x maximising expected utility $\max_{x \in \mathscr{B}_1} \Psi(x) = \sum_{N_1, N_2, N_3} u_D(c_D(N_1, N_2, N_3)) p_{N_1 \times}^1 p_{N_2 \times}^2 p_{N_3 \times}^3.$

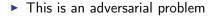
Typical assumptions

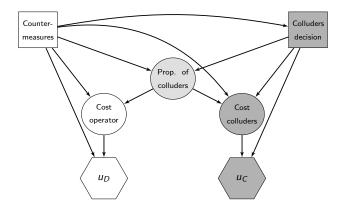
$$egin{aligned} & N_1 \sim \mathscr{P}\textit{ois} \left(\lambda_1 = \textit{N}[1-\textit{p}(x)]
ight) \ & N_2 \sim \mathscr{P}\textit{ois} \left(\lambda_2 = \textit{N}\textit{p}(x)[1-\textit{q}(x_1)]
ight) \ & N_3 \sim \mathscr{P}\textit{ois} \left(\lambda_3 = \textit{N}\textit{p}(x)\textit{q}(x_1)
ight) \end{aligned}$$

• Each additional inspector inspects fraction ρ of tickets

$$q(x_1)=\rho x_1.$$

► Each additional measure has a (dampened) deterrent effect $p(x) = p(x_1, x_2, x_3, x_4, x_5) = p_0 \exp(-\gamma_1 x_1 - \gamma_2 x_2 - \gamma_3 x_3 - \gamma_4 x_4 - \gamma_5) + p_r.$


u_D risk averse, u_D strategically equivalent to


$$u_D(c_D) = -\exp(-k_D c_D), \ k_D > 0.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < 9/32</p>

Solving only for colluders

Colluders dynamics

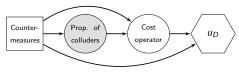
- "Club" entailing M operations over incumbent planning period.
 - They see security investments x (Sequential Defend-Attack).
 - They decide proportion r of fare evasion
 - Actual proportion r' depends also on $(x_1, x_2, x_3, x_4, x_5)$.
 - Operational costs, including preparation costs c_e

$$c = t(M_2 - M_1) - fM_3 - rc_e M.$$

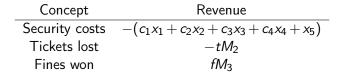
- ▶ *M*₁ evaders pay (abortion).
- M₂ not pay, not caught.
- M₃ not pay, caught.

 $(M_1, M_2, M_3) \sim \mathscr{M}(M; (1-r'), r'(1-q_A(x_1)), r'q_A(x_1)).$

Their utility (risk prone)


$$u_C(c-rc_eM).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > = 14/32>


Operator's problem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Relevant revenues and costs

Total increase in outcome is

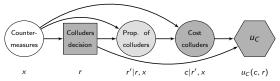
$$c_D = fM_3 - tM_2 - (c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4 + x_5).$$

Operator's problem (cont.)

• $u_D \longrightarrow$ utility, h(r|x) models their beliefs over r given x, then

$$\psi(x) = \int \left[\sum_{M_1, M_2, M_3} p_{M_1 M_2 M_3 \times} u_D \left(f M_3 - t M_2 - \sum_{i=1}^4 c_i x_i - x_5 \right) \right] \times \frac{h(r|x)}{dr} dr,$$

 $p_{M_1M_2M_3x} = \Pr(M_i \text{ type } i \text{ colluders}|x \text{ invested}), \sum_{i=1}^3 M_i = M.$ Then must column


They must solve

$$\max_{x\in\mathscr{B}_1}\psi(x_1,x_2,x_3,x_4,x_5),$$

but h(r|x) not directly available (\longrightarrow Attacker's problem).

Attacker's problem

- x, security investment by Operator. We may consider p_A(x) (Attacker's beliefs over x), although not necessary (is seen).
- r, decision made by Attacker.
- ► r', effective fare evasion proportion.
 - One possible model r' = r(1 − s(x₁)), s(x₁) proportion of evasion abortions.
 - $p_A(s(x_1)) = p_A(s|x_1)$ induces $p_A(r'|r,x)$.
- *c*, global costs of evasion operation.
- u_C , utility over consequences $u_C(c rc_e M)$.

Solving Attacker's problem

1. Integrate out uncertainty over c, getting expected utility CONOMICS

$$\psi_{A}(r',r,x) = \int \left[\sum_{M_{1},M_{2},M_{3}} p_{M_{1}M_{2}M_{3}x} \\ \times u_{C}\left(t(M_{2}-M_{1})-fM_{3}-rc_{e}M\right)\right] \times g_{A}(q_{A}|x_{1})dq_{A}.$$

 $g_A(q_A|x_1)$ density over $q_A|x_1$, inducing $p_A(c|r',x)$.

2. Integrate out uncertainty over r', obtaining expected utility

$$\psi_{\mathcal{A}}(r,x) = \int \psi_{\mathcal{A}}(r',r,x) p_{\mathcal{A}}(s|x_1) ds.$$

3. Find Attacker's optimal strategy

$$r(x) = rg\max_{r} \psi_{\mathcal{A}}(r, x).$$

Simulation scheme for estimating h(r|x)

► Uncertainty about u_C(·), g_A(q_A|·), p_A(s|·), modelled through U_C(·), G_A(q_A|·), P_A(s|·), has to be propagated.

For each x
For i = 1 to K
Sample
$$U_C^i, G_A^i(q_A|\cdot), P_A^i(s|\cdot)$$
. Compute
 $\psi_A^i(r', r, x) =$
 $\int \left[\sum_{M_1, M_2, M_3} p_{M_1 M_2 M_3 x} U_C^i(t(M_2 - M_1) - fM_3 - rc_e M) \times G_A^i(q_A|x_1) \right] dq_A.$
Compute
 $\psi_A^i(r, x) = \int \psi_A^i(r', r, x) P_A^i(s|x_1) ds.$
Compute random optimal alternative
 $R^i = \arg \max_r \psi_A^i(r, x).$
Approximate $p_A(R(x) \le r) \approx \#\{1 \le i \le K : R^i \le r\}/K.$

Typical assumptions

• Colluders risk prone in benefits $\rightarrow u_C$ strategically equivalent M_C

$$u_C(c) = \exp(k_C c), \ k_C > 0.$$

A random utility model could be

$$U_C(c) = \exp(k_C c), \ k_C \sim \mathscr{U}(0, K_C).$$

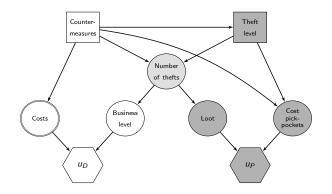
► Evaders proportion s ~ ℬe(α,β). Dirichlet process with base ℬe(α,β) for P_A

$$P_A \sim \mathscr{DP}(\mathscr{B}e(\alpha,\beta),\delta_1).$$

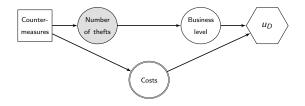
- If we consider r' > r, we could use an error model r' = r + s, s described by p_A(s) and P_A ~ DP(p_A, δ₂).
- Proportion of inspections q_A(x₁) ~ ℬe(α,β) with α/(α+β) = δx₁ and small variance.
 - Then, $G_A \sim \mathscr{DP}(\mathscr{B}e(\alpha,\beta),\delta_3)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

Solving the problem when both evaders are present


2. Pickpocketing

Description of problem


Four countermeasures.

- SECONOMICS
- Patrols (preventive/recovery), (y_1, d_1) .
- Cameras (preventive), (y_2, d_2) .
- ► Guards (preventive/recovery), (x₃, c₃).
- Public awareness plans (preventive), (y₃).

Defender's problem

- Operator invests y_1, y_2, x_3 (units) and y_3 (in the plan).
- Faces a delinquency level.
- Sees a decrease in business.
- Gets her utility (depends on business level and operator costs).

Defender's problem (cont.)

I

Security costs

$$c'_D(y_1, y_2, x_3, y_3) = d_1y_1 + d_2y_2 + c_3x_3 + y_3.$$

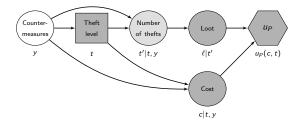
▶ b, business level, T theft level, $u_D(c'_D, b)$ Defender's utility

$$\max_{y\in\mathscr{B}_2}\iint u_D(c'_D,b)p(b|T)p(T|y)\,\mathrm{d}T\,\mathrm{d}y.$$

• $u_D(c'_D, b)$ includes costs and reduction in business level

$$c_D'+(b_0-b).$$

Operator typically risk averse with respect to costs


$$\mu_D(c'_D, b) = -\exp(k'_D \cdot [c'_D + (b_0 - b)]), \ k'_D > 0.$$

• To assess $p(T|y) \longrightarrow$ Attacker's problem.

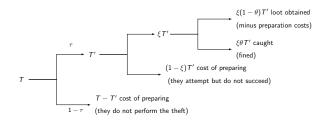
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ 22/32

Attacker's problem

- See Defender's investment (y_1, y_2, x_3, y_3) .
- ► Decide on target theft level *T*.
- Implement actual number of theft operations, $T' = \tau T$.
- Costs (of implementing) their actions is $c_p T$.

Attacker's problem (cont.)

Face operational costs.


・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

24/32

- With prob. (1ξ) , unsuccessful attempt. No consequences.
- With prob. $\xi \theta$, succeed but caught. Fine g.
- With prob. $\xi(1-\theta)$, succeed and not caught. Loot L.
- Total cost/benefit balance

$$c = [-c_{p} \times T_{1}] - [(g + c_{p}) \times T_{2}] + [(L - c_{p}) \times T_{3}] = -c_{p}T - gT_{2} + LT_{3}.$$

• Get utility $u_P(-c_pT-gT_2+LT_3)$.

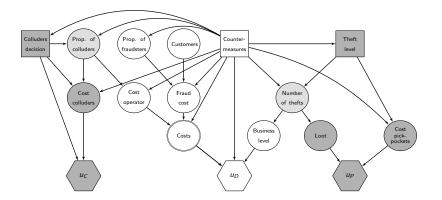
Solving Attacker's problem

For each y For i = 1 to K Sample $U_{P}^{i}, P_{A}^{i}(\tau|\cdot), P_{A}^{i}(\xi|\cdot), P_{A}^{i}(\theta|\cdot).$ Compute $\psi_P^{\mathtt{i}}(\mathtt{t}',\mathtt{t},\mathtt{y}) = \iint \left| \sum_{T_1,T_2,T_3} p_{T_1T_2T_3\mathtt{y}} \int \mathtt{U}_P^{\mathtt{i}}(-\mathtt{c}_p \mathtt{T} - \mathtt{g} \mathtt{T}_2 + \mathtt{L} \mathtt{T}_3) \, \mathtt{d} \mathtt{U}_P \right|$ $\times P^{i}_{\Lambda}(\xi|y_1,x_3,y_3)P^{i}_{\Lambda}(\theta|y_1,x_3)d\xi d\theta.$ Compute $\psi_{\mathrm{P}}^{\mathtt{i}} = \int \psi_{\mathrm{P}}^{\mathtt{i}}(\mathtt{t}', \mathtt{t}, \mathtt{y}) \mathtt{P}_{\mathtt{A}}^{\mathtt{i}}(\tau|\mathtt{y}_{1}, \mathtt{x}_{3}) \mathtt{d} \tau.$ Compute (and register) the optimal alternative $T^{i} = \operatorname{argmax}_{t} \Psi_{P}^{i}(t, y).$ Approximate $p_A(T(y) \le t) \approx \#\{1 \le i \le K : T^i \le t\}/K$.

Model assumptions and uncertainties

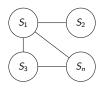
• $\ell \sim \mathscr{U}(\ell_a, \ell_b)$, loot obtained when:

- t', effective theft level $t' = t \tau(y_1, x_3)$.
 - $p_A(\tau(y_1, x_3)) = p_A(\tau|y_1, x_3)$ induces $p_A(t'|t, y)$.
- ξ , success rate $\xi(y_1, x_3, y_3) = \xi_0 \exp(-\mu_1 y_1 - \mu_2 x_3 - \mu_3 y_3) + \xi_r.$
 - $p_A(\xi(y_1, x_3, y_3)) = p_A(\xi|y_1, x_3, y_3)$ induces $p_A(\ell|t')$.
- θ , detention rate $\theta(y_1, x_3) = \rho_1 y_1 + \rho_2 x_3$.
 - $p_A(\theta(y_1, x_3)) = p_A(\theta|y_1, x_3)$ induces $p_A(c|t, y)$.


►
$$u_P(c) = \exp(k_P c), k_P > 0, U_P(c) = \exp(k_P c), k_P \sim \mathscr{U}(0, K_P).$$

3. Fare evasion and pickpocketing over multiple stations

Joint influence diagram



Multiple sites problem

- Colluders and pickpockets do not make common cause.
- We can solve their problems separately.
- A network of n interconnected stations

 For each station a model like above is applicable, with mobile resources subject to global and specific budget and mobility constraints.

Mobility rules

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

30/32

- Fare evaders
 - If too many security measures in entering station i, move to adjacent station i'.
 - ▶ If inspectors in intermediate station *k*, an alternative route.
- Pickpockets
 - If too many security measures in station *i*, move to adjacent station *i*'.
- Some personnel (inspectors, patrols, guards) are mobile.

Main results

- A DSS is being currently devised to help decision makers.
- Upon perceived low-level threats, authorities tend to underestimate risk.
 - Attackers see a breach in security (more attackers).
 - Great impact can be caused even with low-profile attacks.
 - Low-cost preventive measures and well-trained personnel could deter attackers or minimize their number.
- Under scenario of high probability of attack.
 - Authorities tend to invest on expensive (sometimes sensationalist and ineffective) measures.
 - Set up security and mobility protocols for personnel increase their efficiency.

Conclusions

32/32

- For fare evasion, a mixed non adversarial adversarial problem has been tackled.
- For pickpockets, not only direct economic impact considered (also image costs).
- General model over multiple sites has been devised.
 - Resources are constrained by budget and mobility.
 - Some countermeasures have to be shared for both threats.