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Outline

Fare evasion
Solving only for standard evaders
Solving only for colluders
Solving both problems simultaneously

Pickpocketing

Fare evasion and pickpocketing over multiple stations
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General overview

I One station
I Two threats.

I Fare evasion
I Pickpocketing by a team.
I Both threats simultaneously.

I Extension to more than one station.
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1. Fare evasion
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Description of problem

I Two types of evaders:
I Standard (standard random process).
I Colluders (ARA; explicitly modelling intentionality).

I Five countermeasures.
I Inspectors (preventive/recovery), (x1,c1).
I Security guards (bouncers), usually outsourced (preventive),

(x2,c2).
I Guards, working solo or in pairs (preventive/recovery), (x3,c3).
I Automatic access doors (preventive), (x4 ≤ n4,c4).
I Metro officers (preventive), (x5, negotiation).

I In general, the more resources, the less fare evasion will be.
Also, the more inspectors, the more customers checked and,
possibly, the more fines collected.
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Three types of customers

1. Civic customers.

2. Standard fare
evaders.

3. Colluding fare
evaders.
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Solving only for standard evaders

I This is a ’standard’ risk management problem

Counter-

measures
Customers

Prop. of

fraudsters

CM

cost

Fraud

cost

Cost

Utility
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Solving only for standard evaders (cont.)

I Operator invests c1x1+ c2x2+ c3x3+ c4x4+ x5. (Constraints)
I p (x) proportion of standard evaders. q(x1) proportion of

customers inspected.
I 1−p(x)−→ N1 civic customers pay ticket.
I p(x)[1−q(x1)]−→ N2 not pay ticket, not caught (loss t).
I p(x)q(x1)−→ N3 do not pay ticket but are caught (income f ).

cD(N1,N2,N3) = 0×N1− t×N2+ f ×N3−
4

∑
i=1

c4x4− x5.

I Evaluate security plan x maximising expected utility

max
x∈B1

ψ(x) = ∑
N1,N2,N3

uD(cD(N1,N2,N3))p1
N1x p2

N2x p3
N3x .
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Typical assumptions

N1 ∼Pois (λ1 = N[1−p(x)])
N2 ∼Pois (λ2 = Np(x)[1−q(x1)])

N3 ∼Pois (λ3 = Np(x)q(x1))

I Each additional inspector inspects fraction ρ of tickets

q (x1) = ρx1.

I Each additional measure has a (dampened) deterrent effect

p (x)= p(x1,x2,x3,x4,x5)= p0 exp(−γ1x1−γ2x2−γ3x3−γ4x4−γ5)+pr .

I uD risk averse, uD strategically equivalent to

uD(cD) =−exp(−kDcD), kD > 0.
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Solving only for colluders

I This is an adversarial problem

Counter-

measures

Colluders

decision

Prop. of

colluders

Cost

operator

Cost

colluders

uD uC

10/32



Colluders dynamics

I “Club” entailing M operations over incumbent planning period.
I They see security investments x (Sequential Defend-Attack).
I They decide proportion r of fare evasion
I Actual proportion r ′ depends also on (x1,x2,x3,x4,x5).
I Operational costs, including preparation costs ce

c = t(M2−M1)− fM3− rceM.

I M1 evaders pay (abortion).
I M2 not pay, not caught.
I M3 not pay, caught.

(M1,M2,M3)∼M
(
M; (1− r ′), r ′(1−qA(x1)), r ′qA(x1)

)
.

I Their utility (risk prone)

uC (c− rceM).
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Operator’s problem

Counter-

measures

Prop. of

colluders

Cost

operator
uD

I Relevant revenues and costs

Concept Revenue
Security costs −(c1x1+ c2x2+ c3x3+ c4x4+ x5)
Tickets lost −tM2
Fines won fM3

I Total increase in outcome is

cD = fM3− tM2− (c1x1+ c2x2+ c3x3+ c4x4+ x5).
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Operator’s problem (cont.)

I uD −→ utility, h(r |x) models their beliefs over r given x , then

ψ(x)=
∫ [

∑
M1,M2,M3

pM1M2M3x uD

(
fM3−tM2−

4

∑
i=1

cixi−x5

)]
×h(r |x)dr ,

pM1M2M3x = Pr(Mi type i colluders|x invested), ∑
3
i=1 Mi = M.

I They must solve

max
x∈B1

ψ(x1,x2,x3,x4,x5),

but h (r |x) not directly available (−→ Attacker’s problem).
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Attacker’s problem

Counter-

measures

Colluders

decision

Prop. of

colluders

Cost

colluders
uC

x r r ′|r , x c|r ′, x uC (c, r)

I x , security investment by Operator. We may consider pA(x)
(Attacker’s beliefs over x), although not necessary (is seen).

I r , decision made by Attacker.
I r ′, effective fare evasion proportion.

I One possible model r ′ = r(1− s(x1)), s(x1) proportion of
evasion abortions.

I pA(s(x1)) = pA(s|x1) induces pA(r ′|r ,x).
I c , global costs of evasion operation.
I uC , utility over consequences uC (c− rceM).
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Solving Attacker’s problem

1. Integrate out uncertainty over c , getting expected utility

ψA(r ′, r ,x) =
∫ [

∑
M1,M2,M3

pM1M2M3x

× uC
(
t(M2−M1)− fM3− rceM

)]
×gA(qA|x1)dqA.

gA(qA|x1) density over qA|x1, inducing pA(c |r ′,x).
2. Integrate out uncertainty over r ′, obtaining expected utility

ψA(r ,x) =
∫

ψA(r ′, r ,x)pA(s|x1)ds.

3. Find Attacker’s optimal strategy

r(x) = argmax
r

ψA(r ,x).
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Simulation scheme for estimating h (r |x)

I Uncertainty about uC (·), gA(qA|·), pA(s|·), modelled through
UC (·), GA(qA|·), PA(s|·), has to be propagated.

For each x
For i= 1 to K

Sample UiC,G
i
A(qA|·),PiA(s|·). Compute

ψ
i
A (r
′,r,x) =∫ [

∑
M1,M2,M3

pM1M2M3x U
i
C
(
t(M2−M1)−fM3−rceM

)
×GiA(qA|x1)

]
dqA.

Compute

ψ
i
A (r,x) =

∫
ψ
i
A (r
′,r,x)PiA(s|x1)ds.

Compute random optimal alternative

Ri = argmaxrψ
i
A (r,x).

Approximate pA(R(x)≤ r)≈#{1≤ i≤ K : Ri ≤ r}/K.
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Typical assumptions
I Colluders risk prone in benefits −→ uC strategically equivalent

uC (c) = exp(kCc), kC > 0.

I A random utility model could be

UC (c) = exp(kCc), kC ∼U (0,KC ).

I Evaders proportion s ∼Be(α,β ). Dirichlet process with base
Be(α,β ) for PA

PA ∼DP(Be(α,β ),δ1).

I If we consider r ′ > r , we could use an error model r ′ = r + s, s
described by pA(s) and PA ∼DP(pA,δ2).

I Proportion of inspections qA(x1)∼Be(α,β ) with α

α+β
= δx1

and small variance.
I Then, GA ∼DP(Be(α,β ),δ3).
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Solving the problem when both evaders are present

Counter-
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Cost
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Cost
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Cost
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2. Pickpocketing
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Description of problem

I Four countermeasures.
I Patrols (preventive/recovery), (y1,d1).
I Cameras (preventive), (y2,d2).
I Guards (preventive/recovery), (x3,c3).
I Public awareness plans (preventive), (y3).

Counter-

measures

Theft

level

Number

of thefts

Costs
Business

level
Loot

Cost
pick-

pockets

uD uP
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Defender’s problem

Counter-

measures

Number

of thefts

Business

level
uD

Costs

I Operator invests y1,y2,x3 (units) and y3 (in the plan).
I Faces a delinquency level.
I Sees a decrease in business.
I Gets her utility (depends on business level and operator costs).
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Defender’s problem (cont.)

I Security costs

c ′D(y1,y2,x3,y3) = d1y1+d2y2+ c3x3+ y3.

I b, business level, T theft level, uD(c ′D ,b) Defender’s utility

max
y∈B2

∫∫
uD(c ′D ,b)p(b|T )p(T |y)dT dy .

I uD(c ′D ,b) includes costs and reduction in business level

c ′D +(b0−b).

I Operator typically risk averse with respect to costs

uD(c ′D ,b) =−exp
(
k ′D · [c ′D +(b0−b)]

)
, k ′D > 0.

I To assess p(T |y)−→ Attacker’s problem.
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Attacker’s problem

Counter-

measures

Theft

level

Number

of thefts
Loot uP

y t t′|t, y ℓ|t′ uP(c, t)

Cost

c|t, y

I See Defender’s investment (y1,y2,x3,y3).
I Decide on target theft level T .
I Implement actual number of theft operations, T ′ = τT .
I Costs (of implementing) their actions is cpT .
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Attacker’s problem (cont.)

I Face operational costs.
I With prob. (1−ξ ), unsuccessful attempt. No consequences.
I With prob. ξ θ , succeed but caught. Fine g .
I With prob. ξ (1−θ), succeed and not caught. Loot L.

I Total cost/benefit balance

c =
[
−cp×T1

]
−
[
(g+cp)×T2

]
+
[
(L−cp)×T3

]
=−cpT−gT2+LT3.

I Get utility uP(−cpT −gT2+LT3).

T

1− τ

T − T ′ cost of preparing

(they do not perform the theft)

T ′
τ

(1− ξ)T ′ cost of preparing

(they attempt but do not succeed)

ξT ′

ξθT ′ caught

(fined)

ξ(1− θ)T ′ loot obtained

(minus preparation costs)
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Solving Attacker’s problem

For each y
For i= 1 to K

Sample UiP,P
i
A(τ|·),PiA(ξ |·),PiA(θ |·).

Compute

ψ
i
P (t
′,t,y) =

∫∫ [
∑

T1,T2,T3
pT1T2T3y

∫
UiP
(
−cpT−gT2+LT3

)
dUP

]
× PiA(ξ |y1,x3,y3)PiA(θ |y1,x3)dξdθ .

Compute

ψ
i
P =

∫
ψ
i
P (t
′,t,y)PiA(τ|y1,x3)dτ.

Compute (and register) the optimal alternative

Ti = argmaxt ψ
i
P (t,y).

Approximate pA(T(y)≤ t)≈#{1≤ i≤ K : Ti ≤ t}/K.
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Model assumptions and uncertainties

I `∼U (`a, `b), loot obtained when:
I t ′, effective theft level t ′ = tτ(y1,x3).

I pA(τ(y1,x3)) = pA(τ|y1,x3) induces pA(t ′|t,y).
I ξ , success rate

ξ (y1,x3,y3) = ξ0 exp(−µ1y1−µ2x3−µ3y3)+ξr .
I pA(ξ (y1,x3,y3)) = pA(ξ |y1,x3,y3) induces pA(`|t ′).

I θ , detention rate θ(y1,x3) = ρ1y1+ρ2x3.
I pA(θ(y1,x3)) = pA(θ |y1,x3) induces pA(c|t,y).

I uP(c) = exp(kPc), kP > 0, UP(c) = exp(kPc), kP ∼U (0,KP).
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3. Fare evasion and
pickpocketing over
multiple stations
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Joint influence diagram
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Multiple sites problem

I Colluders and pickpockets do not make common cause.
I We can solve their problems separately.
I A network of n interconnected stations

S1 S2

S3 Sn

I For each station a model like above is applicable, with mobile
resources subject to global and specific budget and mobility
constraints.
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Mobility rules

I Fare evaders
I If too many security measures in entering station i , move to

adjacent station i ′.
I If inspectors in intermediate station k, an alternative route.

I Pickpockets
I If too many security measures in station i , move to adjacent

station i ′.

I Some personnel (inspectors, patrols, guards) are mobile.
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Main results

I A DSS is being currently devised to help decision makers.
I Upon perceived low-level threats, authorities tend to

underestimate risk.
I Attackers see a breach in security (more attackers).
I Great impact can be caused even with low-profile attacks.
I Low-cost preventive measures and well-trained personnel could

deter attackers or minimize their number.

I Under scenario of high probability of attack.
I Authorities tend to invest on expensive (sometimes

sensationalist and ineffective) measures.
I Set up security and mobility protocols for personnel increase

their efficiency.
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Conclusions

I For fare evasion, a mixed non adversarial - adversarial problem
has been tackled.

I For pickpockets, not only direct economic impact considered
(also image costs).

I General model over multiple sites has been devised.
I Resources are constrained by budget and mobility.
I Some countermeasures have to be shared for both threats.
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