
1

Comparing Vulnerability Severity and Exploits Using
Case-Control Studies

LUCA ALLODI and FABIO MASSACCI, University of Trento

(U.S.) Rule-based policies for mitigating software risk suggest using the CVSS score to measure the risk
of an individual vulnerability and act accordingly. A key issue is whether the ‘danger’ score does actually
match the risk of exploitation in the wild, and if and how such a score could be improved. To address this
question, we propose using a case-control study methodology similar to the procedure used to link lung cancer
and smoking in the 1950s. A case-control study allows the researcher to draw conclusions on the relation
between some risk factor (e.g., smoking) and an effect (e.g., cancer) by looking backward at the cases (e.g.,
patients) and comparing them with controls (e.g., randomly selected patients with similar characteristics).
The methodology allows us to quantify the risk reduction achievable by acting on the risk factor. We illustrate
the methodology by using publicly available data on vulnerabilities, exploits, and exploits in the wild to
(1) evaluate the performances of the current risk factor in the industry, the CVSS base score; (2) determine
whether it can be improved by considering additional factors such the existence of a proof-of-concept exploit,
or of an exploit in the black markets. Our analysis reveals that (a) fixing a vulnerability just because it
was assigned a high CVSS score is equivalent to randomly picking vulnerabilities to fix; (b) the existence of
proof-of-concept exploits is a significantly better risk factor; (c) fixing in response to exploit presence in black
markets yields the largest risk reduction.
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1. INTRODUCTION

Security configuration manager software such as Tripwire Enterprise, HP SCAP Scan-
ner, and QualysGuard usually rely on vulnerability data from the National (U.S.)
Vulnerability Database1 (NVD) for their assessments. Each vulnerability is reported
alongside a ‘technical assessment’ given by the Common Vulnerability Scoring Sys-
tem2 (CVSS), which evaluates different technical aspects of the vulnerability [Mell
et al. 2007]. The CVSS score is also often used as a metric for risk, despite it not

1http://nvd.nist.gov.
2http://www.first.org/cvss.
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being designed for this purpose. For example, the U.S. Federal government (with
QTA0-08-HC-B-0003 reference notice) requires all IT products for the U.S. Govern-
ment to manage and assess the security of IT configurations using the NIST-certified
S-CAP protocol, which explicitly says [Quinn et al. 2010] the following.

“Organizations should use CVSS base scores to assist in prioritizing the
remediation of known security-related software flaws based on the relative
severity of the flaws.”

Another notable example is PCI DSS, the standard for security of credit card data, that
states a similar rule [PCI Council 2010].

“Risk rankings should be based on industry best practices. For example,
criteria for ranking High risk vulnerabilities may include a CVSS base score
of 4.0 or above [..].”

As a result, the CVSS base score is commonly used in the industry to identify ‘high
risk’ vulnerabilities that must be fixed with the highest priority. However, as of the date
of publication, it is not clear whether this interpretation of the CVSS score matches with
attacks in the wild. Acknowledging the problem, risk factors other than the sole CVSS
are considered by different security management tools in the industry (e.g., Rapid7,
Qualy, Symantec, and Tripwire). However, a direct comparison of different policies is
impossible without a sound scientific methodology to evaluate policy effectiveness: at
present, it is unclear what policy yields the highest benefit.

A major obstacle for this type of analysis is the nature of the data at hand. Vulner-
ability information is rife with problems, and exploitation data is often hard to find.
A common assumption made in academy and industry alike is that proof-of-concept
exploit data can be used to measure the state of security of a software, or the perfor-
mances of a vendor in their race against hackers. While proof-of-concept exploit data
is much easier to collect than data on actual attacks, the former says little about the
usage of the exploit in the wild: on the contrary, a proof-of-concept exploit is merely
a byproduct of the so-called ‘responsible vulnerability disclosure’ process, whereby a
security researcher that finds a vulnerability discloses it to the vendor alongside a
proof-of-concept exploitation code that proves the existence of the vulnerability itself
[Miller 2007]. Software and vulnerability risk measures should however be based on
factual evidence of exploitation rather than on security researchers’ participation in
bug bounty programs. Similar problems can be encountered for vulnerability data as
well. For example, it is known that vulnerability timing data in public databases such
as the National Vulnerability Database may “contain errors of unknown size” [Schryen
2009]. Exploitation and vulnerability data is however often used as-is without consid-
ering its inherent limitations and shortcomings (see [Frei et al. 2006; Shahzad et al.
2012; Houmb et al. 2010] as some examples).

To address these problems, we proceed as follows.

(1) We present our datasets of vulnerabilities, proof-of-concept exploits, exploits traded
in the black markets, and exploits detected in the wild.

(2) We introduce the case-control study as a fully-replicable methodology for soundly
analyzing vulnerability and exploit data.

(3) We check the suitability of the current use of the CVSS score as a risk metric by
comparing it against exploits recorded in the wild and by performing a breakdown
analysis of its characteristics and values.

(4) We use the case-control study methodology to show and measure how the current
CVSS practice can be improved by considering additional risk factors. To do this,
we provide a quantitative measure of the reduction in risk of exploitation yield by
the resulting policies. The risk factors considered in our study are the following.
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(a) The CVSS base score as reported by the National Vulnerability Database
(b) Existence of a public proof-of-concept exploit
(c) Existence of an exploit traded in the cybercrime black markets

An important facet of our methodology is its reproducibility and extensibility to
many practical scenarios. For example, any other risk factor (e.g., software popularity,
CVSS subscores, or cost of patching) may be considered when replicating our study. To
favor reproducibility and clarity, in this article, we provide an exhaustive description
of the analytical procedure and the rationale behind the specific decisions needed
to operationalize the methodology; furthermore, we make our datasets available for
replication and robustness checks.

The remainder of this article is organized as follows: we first introduce our four
datasets (Section 2), illustrate the problem with the current CVSS-based best practice
(Section 2.1), and provide a breakdown of the issue (Section 3). In the core of the article,
we propose the case-control methodology and implement it to assess the performances
of the CVSS score and other risk factors (Section 4). We then discuss our results
(Section 5) and this study’s threats to validity (Section 6). We finally review related
work (Section 7) and conclude (Section 8).

2. DATASETS

Our analysis is based on four datasets reporting data on vulnerabilities and CVSS
scores, proof-of-concept exploits, exploits traded in the black markets, and exploits
in the wild. For the interested reader, Allodi and Massacci [2012] gives a thorough
description of the datasets along with details on the collection methodology.

—NVD (National Vulnerability Database). The ‘universe’ of vulnerabilities. NVD is the
reference database for disclosed vulnerabilities. It is held by NIST and has been
widely used and analyzed in previous vulnerability studies [Massacci et al. 2011;
Scarfone and Mell 2009]. Our copy of the NVD dataset contains data on 49,599
vulnerabilities reported until June 2012.

—EDB (Exploit-db3). Proof-of-concept exploits. EDB includes information on proof-of-
concept exploits and references the RELATIVE CVE. Our EDB copy contains data
on 8,122 proof-of-concept exploits and affected CVEs.

—EKITS. Black-marketed exploits. EKITS is our dataset of vulnerabilities bundled in
exploit kits, malicious websites that the attacker deploys on some public webserver
he/she controls. An exploit kit’s purpose is to attack and infect systems that connect
to them; for further details, refer to Kotov and Massacci [2013] and Grier et al.
[2012]. EKITS is based on Contagio’s Exploit Pack Table4 and, at the time of writing,
substantially expands it in terms of reported exploit kits. EKITS reports 103 unique
CVEs bundled in 90+ exploit kits. Examples of reported exploit kits are Elenonore,
Blackhole, Crimepack, Fragus, Sakura, Icepack [Symantec 2011].

—SYM. Vulnerabilities exploited in the wild. SYM reports vulnerabilities that have
been exploited in the wild as documented in Symantec’s AttackSignature5 and
ThreatExplorer6 public datasets. SYM contains 1,277 CVEs identified in viruses
(local threats) and remote attacks (network threats) by Symantec’s commercial prod-
ucts. This has of course some limitation, as direct attacks by individual motivated
hackers against specific companies are not considered here. The SYM dataset can
be seen as an ‘index’ of the WINE dataset [Dumitras and Shou 2011], where actual

3http://www.exploit-db.com/.
4http://contagiodump.blogspot.it/2010/06/overview-of-exploit-packs-update.html.
5http://www.symantec.com/security response/attacksignatures/.
6http://www.symantec.com/security response/threatexplorer/.
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Table I. Summary of our Datasets

DB Content Collection method #Entries

NVD CVEs XML parsing 49,599
EDB Publicly exploited CVEs Download and Web parsing to

correlate with CVEs
8,122

SYM CVEs exploited in the
wild

Web parsing to correlate with CVEs 1,277

EKITS CVEs in the black market Ad-hoc analysis + Contagio’s Exploit
table

103

Fig. 1. Distribution of CVSS scores per dataset.

volumes of attacks are reported. We do not use WINE here as we want to characterize
a worst-case scenario where ‘one exploit is too many’ (i.e., all exploited vulnerabilities
are treated the same regardless of the volume of their exploitation in the wild).

Table I summarizes the content of each dataset and their collection methodology. All
the datasets used in this study are available from the authors on request.7

2.1. A Coarse-Grained Overview of the Datasets

The CVSS score is represented by a number in [0..10], where 0 is the lowest criticality
level and 10 the maximum (for further reference see [Mell et al. 2007]). We report
in Figure 1 the histogram distribution of the CVSS base scores. Three clusters of
vulnerabilities are visually identifiable throughout our datasets.

(1) HIGH score. CVSS ≥ 9.
(2) MEDIUM score. 6 ≤ CVSS < 9.
(3) LOW score. CVSS < 6.

Figure 2 reports a Venn diagram of our datasets. Area size is proportional to the
number of vulnerabilities that belong to it; the color is an indication of the CVSS score.
Red, orange, and cyan areas represent HIGH, MEDIUM, and LOW score vulnerabilities,
respectively. This map gives a first intuition of the problem with using the CVSS base
score as a ‘risk metric for exploitation’: the red vulnerabilities located outside of SYM
are ‘CVSS false positives’ (i.e., HIGH risk vulnerabilities that are not exploited); the cyan
vulnerabilities in SYM are instead ‘CVSS false negatives’ (i.e., LOW and MEDIUM risk

7http://securitylab.disi.unitn.it/doku.php?id=datasets.
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Fig. 2. Relative map of vulnerabilities per dataset.

Table II. Conditional Probability of a Vulnerability
Being a Threat

vuln in SYM vuln not in SYM

EKITS 75.73% 24.27%
EDB 4.81% 95.19%
NVD 2.57% 97.43%

Note: Conditional probability that a vulner-
ability v is listed by Symantec as a threat,
given that it is contained in a dataset, that is,
P(v ∈ SY M | v ∈ dataset). This computation
accounts for the whole population of vulnera-
bilities and can not be interpreted as a final
conclusion on likelihood of exploits (Section 4).

vulnerabilities that are exploited). A relevant portion of CVSS-marked vulnerabilities
seem therefore to represent either false positive or false negatives.

Table II reports the likelihood of a vulnerability being in SYM if it is contained in
one of our datasets. Prima facie analysis would suggest that there is approximately a
75% probability that a vulnerability in the black markets is exploited in the wild. For
NVD and EDB, the rate of exploited vulnerabilities is less than 5%. However, these
conclusions can be grossly incorrect. For example, SYM might report only vulnerabil-
ities of interest to Symantec’s costumers. Suppose most costumers use Windows; then
all Linux vulnerabilities listed in EDB would not be mentioned in SYM, not because
they are not exploited in the wild, but simply because they are not interesting for
Symantec to report. Another possible example can be that Symantec mainly detects
‘remote code execution’ vulnerabilities, while NVD might report lots of vulnerabilities
exploitable through, say, social engineering. We might therefore have a selection bias
problem. In order to offer more scientifically sound conclusions, we first provide a better
understanding of the internals of the CVSS base score (in the following section), and
then introduce the case-control methodology to soundly compare different populations
of vulnerabilities (Section 4).

ACM Transactions on Information and System Security, Vol. 17, No. 1, Article 1, Publication date: August 2014.
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Table III. Possible Values for the Exploitability and Impact Subscores

Impact subscore
Confidentiality Integrity Availability

None None None
Partial Partial Partial

Complete Complete Complete

Exploitability subscore
Access Vector Access complexity Authentication

Local High Multiple
Adjacent Net. Medium Single

Network Low None

3. CVSS SCORE BREAKDOWN

The Common Vulnerability Scoring System identifies three scores: the base score, the
temporal score, and the environmental score. The base score identifies “fundamental
characteristics of a vulnerability that are constant over time and user environments”
[Mell et al. 2007]; the temporal score considers assessments like existence of a patch
for the vulnerability, or the presence of an exploit in the wild; the environmental
score considers further assessments tailored around a specific system implementation.
However, of the three, only the base score is identified, by standards and best practices
alike, as the metric to rely upon for vulnerability management [Quinn et al. 2010; PCI
Council 2010]. The base score is also the only one commonly reported in vulnerability
bulletins and public datasets. We therefore only consider the base score in our analysis.

The CVSS base score is computed as a product of two submetrics: the Impact sub-
metric and the Exploitability submetric. Therefore, the CVSS base score CVSSb is of
the following form.

CVSSb = Impact × Exploitability, (1)

which closely recalls the traditional definition of risk as impact×likelihood. The Impact
submetric is an assessment of the impact the exploitation of the vulnerability has on
the system. The Exploitability subscore is defined by factors such as the difficulty of
the exploitation and reachability of the vulnerability (e.g., from the network or local
access only). For this reason, it is sometimes interpreted as a measure of ‘likelihood of
exploit’ (e.g., [Bozorgi et al. 2010]).

3.1. The Impact and Exploitability Subscores

The Impact and Exploitability subscores are calculated on the basis of additional vari-
ables, reported in Table III. The Impact submetric is identified by three separate
assessments on Confidentiality, Integrity, and Availability. In this manuscript, this
triplet is referred to as the CIA impact. Each CIA variable can assume three values:
Complete (C), Partial (P), None (N). The Exploitability submetric is as well identified
by three variables.

—Access vector identifies whether the attacker can exploit the vulnerability from the
Network, (N); from an Adjacent Network (A); Locally (L).

—Access complexity provides information on the difficulty the attacker may encounter
in recreating the conditions for the exploitation of the vulnerability. This assessment
can assume three values: High (H), Medium (M), or Low (L).

—Authentication represents the number of steps of authentication the attacker has to
pass in order to trigger the vulnerability. The levels of the assessment can be None
(N), Single (S), Multiple (M).

Table III reports a summary of the CVSS base score’s variables and their respective
possible values.

ACM Transactions on Information and System Security, Vol. 17, No. 1, Article 1, Publication date: August 2014.
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Fig. 3. Histogram and boxplot of CVSS Impact subscores per dataset.

3.2. Breakdown of the Impact Subscore

Figure 3 depicts a histogram distribution of the Impact subscore. The distribution of
the Impact score varies sensibly depending on the dataset. For example, in EDB, scores
between six and seven characterize the great majority of vulnerabilities, while in SYM
and EKITS, most vulnerabilities have Impact scores greater than nine. This is an effect
of the different nature of each dataset: for example, a low Impact vulnerability may be of
too little value to be worth the bounty by a security researcher, and therefore these may
be under-represented in EDB [Miller 2007]; medium-score vulnerabilities may instead
represent the best trade-off in terms of market value and effort required to discover
or exploit. In the case of SYM and EKITS vulnerabilities, it is unsurprising that these
yield a higher Impact than the average vulnerability or proof-of-concept exploit: these
datasets feature vulnerabilities actually chosen by attackers to deliver attacks, or to
be bundled in tools designed to remotely execute malware. The different distribution of
the CVSS Impact subscore among the datasets is apparent in the boxplot reported in
Figure 3. The distribution of Impact scores for NVD and EDB is clearly different from
(and lower than) that of EKITS and SYM.

To explain the gaps in the histogram in Figure 3, we decompose the distribution
of Impact subscores for our datasets. In Table IV, we first report the incidence of the
existing CIA values in NVD. It is immediate to see that only few values are actually
relevant. For example, there is only one vulnerability whose CIA impact is ‘PCP’ (i.e.,
partial impact on confidentiality, complete on integrity, and partial on availability).
Availability almost always assumes the same value of Integrity, apart from the case
where there is no impact on Confidentiality, and looks therefore of limited importance
for a descriptive discussion.

For the sake of readability, we exclude Availability from the analysis and proceed
by looking at the two remaining Impact variables in the four datasets. This inspection
is reported in Table V. Even with this aggregation in place, many possible values
of the CIA assessment remain unused. ‘PP’ vulnerabilities characterize the majority
of disclosed vulnerabilities (NVD) and vulnerabilities with a proof-of-concept exploit
(EDB). Differently, in SYM and EKITS, most vulnerabilities score ‘CC’. This shift alone
can be considered responsible for the different distribution of scores depicted in Figure 3

ACM Transactions on Information and System Security, Vol. 17, No. 1, Article 1, Publication date: August 2014.
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Table IV. Incidence of Values of CIA Triad within NVD

Confidentiality Integrity Availability Absolute no. Incidence

C C C 9,972 20%
C C P 0 -
C C N 43 <1%
C P C 2 <1%
C P P 13 <1%
C P N 3 <1%
C N C 15 <1%
C N P 2 <1%
C N N 417 1%
P C C 5 <1%
P C P 1 <1%
P C N 0 -
P P C 22 -
P P P 17,550 35%
P P N 1,196 2%
P N C 9 <1%
P N P 110 <1%
P N N 5,147 10%
N C C 64 <1%
N C P 1 <1%
N C N 43 <1%
N P C 17 <1%
N P P 465 1%
N P N 7,714 16%
N N C 1,769 4%
N N P 5,003 10%
N N N 16 <1%

Table V. Combinations of Confidentiality and Integrity Values per Dataset

Confidentiality Integrity SYM EKITS EDB NVD

C C 51.61% 74.76% 18.11% 20.20%
C P 0.00% 0.00% 0.02% 0.04%
C N 0.31% 0.97% 0.71% 0.87%
P C 0.00% 0.00% 0.01% 0.01%
P P 27.80% 16.50% 63.52% 37.83%
P N 7.83% 0.97% 5.61% 10.62%
N C 0.23% 0.00% 0.18% 0.22%
N P 4.39% 2.91% 5.07% 16.52%
N N 7.83% 3.88% 6.75% 13.69%

and underlines the difference in the type of impact for the vulnerabilities captured by
the different datasets.

3.3. Breakdown of the Exploitability Subscore

Figure 4 shows the distribution of the Exploitability subscore for each dataset. Almost
all vulnerabilities score between eight and ten, and from the boxplot, it is evident that
the distribution of exploitability subscores is indistinguishable among the datasets. In
other words, Exploitability can not be used as a proxy for likelihood of exploitation in

ACM Transactions on Information and System Security, Vol. 17, No. 1, Article 1, Publication date: August 2014.
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Fig. 4. Distribution of CVSS Exploitability subscores.

Table VI. Exploitability Subfactors for each Dataset

metric value SYM EKITS EDB NVD

E
xp

lo
it

ab
il

it
y

Acc. Vec.
local 2.98% 0% 4.57% 13.07%
adj. 0.23% 0% 0.12% 0.35%
net 96.79% 100% 95.31% 86.58%

Acc. Com.
high 4.23% 4.85% 3.37% 4.70%
medium 38.53% 63.11% 25.49% 30.17%
low 57.24% 32.04% 71.14% 65.13%

Auth.
multiple 0% 0% 0.02% 0.05%
single 3.92% 0.97% 3.71% 5.30%
none 96.08% 99.03% 96.27% 94.65%

the wild. A similar result (but only for proof-of-concept exploits) has also been reported
in Bozorgi et al. [2010].

In Table VI, we decompose the Exploitability subscores and find that most vulnera-
bilities in NVD do not require any authentication (Authentication = (N)one, 95%), and
are accessible from remote (Access Vector = (N)etwork, 87%). This observation is even
more extreme in datasets other than NVD.

For this reason, the CVSS Exploitability subscore resembles more a constant than
a variable and has therefore little or no influence on the variance of the final CVSS
score. This may in turn affect the suitability of the CVSS as a risk metric, that would
lack characterization of ‘exploitation likelihood’.

4. RANDOMIZED CASE-CONTROL STUDY

Randomized Block Design Experiments (or Controlled Experiments) are common
frameworks used to measure the effectiveness of a treatment over a sample of sub-
jects. These designs aim at measuring a certain variable of interest by isolating factors
that may influence the outcome of the experiment, and leave to randomization other
factors of not primary importance. However, in some cases, practical and ethical con-
cerns may make an experiment impossible to perform; for example, one cannot ask
subjects to start smoking in order to see whether they die of cancer. Similarly, we can
not ask subjects to stay vulnerable to see if they get their computers infected and their
bank accounts emptied.

ACM Transactions on Information and System Security, Vol. 17, No. 1, Article 1, Publication date: August 2014.
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When an experiment is not applicable, an alternative solution is to perform a retro-
spective analysis in which the cases (people with a known illness) are compared with
a random population of controls clustered in ‘blocks’ (randomly selected patients with
the same characteristics). These retrospective analyses are called randomized case-
control studies and are in many respects analogous to their experimental counterpart.
A famous application of this methodology is the 1950 study by Doll and Hill [1950],
where the authors showed the correlation between smoking habits and the presence or
absence of cancer of the lungs by performing a case-control study with data on hospital-
ization. We revisit this methodology to assess whether a vulnerability risk factor (like
the CVSS score) can be a good predictor for vulnerability exploitation, and whether it
can be improved by additional information.

We start by giving the reader some terminology.

—Cases. The cases of a control study are the subjects that present the observed effect.
For example, in the medical domain, the cases could be the patients whose status
has been ascertained to be ‘sick’. In a computer security scenario, a case could be
a vulnerability that has been exploited in the wild. For us a case is therefore a
vulnerability in SYM.

—Explanatory variable or risk factor. A risk factor is an effect that can explain the
presence (or increase in likelihood) of the illness (or attack). Considered risk factors
for cancer may be smoking habits or pollution. For vulnerability exploitation, we
consider as risk factors the CVSS level; the existence of a proof-of-concept exploit
(vuln ∈ EDB); the presence of an exploit in the black markets (vuln ∈ EKITS).

—Confounding variables are other variables that, combined with a risk factor, may
be an alternative explanation for the effect, or correlate with its observation. For
example, patient age or sex may be confounding factors for some types of cancer.
In our case, the existence of an exploit in SYM may depend on factors such as type
of vulnerability impact, time of disclosure, and affected software (see the Linux vs.
Windows example in Section 2).

—Control group. A control group is a group of subjects chosen at random from a popula-
tion with similar characteristics (e.g., age, social status, location) to the cases. In the
original design of a case-control study, the control group was composed of healthy
people only. However, with that application of the case-control study, we can only
ascertain whether the risk factor of interest has a greater incidence for the cases
than for the controls. We relax this condition and leave open the (random) chance
that cases get included in the control group. This relaxation allows us to perform
additional computations on our samples (namely, CVSS sensitivity, specificity, and
risk reduction). This, however, introduces (random) noise in the generated data. To
address this issue, we perform the analysis with bootstrapping.

—Bootstrapping is a technique by which noise in the data is ‘flattened’ by re-sampling
the data multiple times with replacement. This mitigates the effects, in the final
analysis, of a random observation showing up in an iteration.

Confounding Variables. Deciding which confounding factors to include in a case-
control study is usually left to the intuition and experience of the researcher [Doll and
Hill 1950]. Because SYM is the ‘critical point’ of our study (as it reports our cases), we
consulted with Symantec to decide which factors to consider as confounding. While this
list can not be considered an exhaustive one, we believe that the identified variables
capture the most important aspects of the inclusion of a vulnerability in SYM. More
details on this process are discussed in Section 6. In the following, we discuss the
confounding variables we choose and the enforcement of the respective controlling
procedure.

ACM Transactions on Information and System Security, Vol. 17, No. 1, Article 1, Publication date: August 2014.
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—Year. Symantec’s commitment in reporting exploited CVEs may change with time.
After a detailed conversation with Symantec, it emerged that the inclusion of a
CVE in an attack signature is an effort on Symantec’s side aimed at enhancing the
usefulness of their datasets. Specifically, Symantec recently opened a data-sharing
program called WINE whose aim is to share attack data with security researchers
[Dumitras and Shou 2011]. The data included in the WINE dataset spans from 2009
to the present date. Given the explicit sharing nature of their WINE program, we
consider vulnerabilities disclosed after 2009 to be better represented in SYM. We
therefore consider only those in our study.

Enforcement. Unfortunately, vulnerability time data in NVD is very noisy due to
how the vulnerability disclosure mechanism works [Schryen 2009; Miller 2007]. For
this reason, an exact match for the disclosure date of the sampled vulnerability svi
and the SYM vulnerability vi is undesirable. In our case, a coarse time data granular-
ity is enough, as we only need to cover the years in which Symantec actively reported
attacked CVEs. We therefore enforce this control by first selecting for sampling only
vulnerabilities whose disclosure dates span from 2009 on, and then by performing
an exact match in the year of disclosure between svi and vi.

—Impact Type. Our analysis (Section 3.2) showed that some CIA types are more com-
mon in SYM than elsewhere (e.g., CIA=‘CCC’). An explanation for this may be that
attackers contrasted by Symantec may prefer to attack vulnerabilities that allow
them to execute arbitrary code rather than ones that enable them to get only a par-
tial access on the file system. We therefore also control for the CVSS Confidentiality,
Integrity, and Availability assessments.

Enforcement. The CVSS framework provides a precise assessments of the CIA
impact. We therefore perform an exact match between the CIA values of the sampled
vulnerability svi and that of vi (in SYM).

In addition, we ‘sanitize’ the data by Software. Symantec is a security market leader
and provides a variety of security solutions, but its largest market share is in the con-
sumer market. In particular, the data in SYM is referenced to the malware and attack
signatures included in commercial products that are often installed on consumer ma-
chines. These are typically Microsoft Windows machines running commodity software
like Microsoft Office and internet plugins like Adobe Flash or Oracle Java8 [Dumitras
and Efstathopoulos 2012]. Because of this selection problem, SYM may represent only
a subset of all the software reported in NVD, EDB or EKITS.

Enforcement. Unfortunately, no standardized way to report vulnerability software
names in NVD exists, and this makes it impossible to directly control this confounding
variable. For example, CVE-2009-0559 (in SYM) is reported in NVD as a “Stack-based
buffer overflow in Excel”, but the main affected software reported is (Microsoft) Office.
In contrast, CVE-2010-1248 (in SYM as well) is a “Buffer overflow in Microsoft Office
Excel” and is reported as an Excel vulnerability. Thus, performing a perfect string
match for the software variable would exclude from the selection relevant vulnerabili-
ties affecting the same software but reporting different software names.

The problem with software names extends beyond this. Consider, for example, a
vulnerability in Webkit, an HTML engine used in many browsers (e.g., Safari, Chrome,
and Opera). Because Webkit is a component of other software, a vulnerability in Apple
Safari might also be a Webkit vulnerability in Google Chrome.

8Unix software is also included in SYM. However we do not consider this sample to be representative of
Unix exploited vulnerabilities.
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Table VII. Output Format of Our Experiment

Risk Factor level v ∈ SYM v �∈ SY M

Above Threshold a b
Below Threshold c d

Table VIII. Sample Thresholds

CVSS ≥ 6
CVSS ≥ 9
CVSS ≥ 9 & v ∈ EDB
CVSS ≥ 9 & v ∈ EKITS

For these reasons, to match the ‘software’ string when selecting svi would introduce
unknown error in the data. We can therefore only perform a best-effort approach
by checking that the software affected by svi is included in the list of software for
∀vi ∈ SYM. In this work, software is therefore used as a sanitation variable rather
than a proper control. A possible refinement of this to be considered for future work is
to cluster software names in more general categories (e.g. Browser or Plugin).

4.1. Experiment Run

We divide our experiment in two parts: sampling and execution. In the former, we gen-
erate the samples from NVD, EDB, and EKITS. In the latter, we compute the relevant
statistics on the samples. What follows is a textual description of these processes.

Sampling. To create the samples, we first select a vulnerability vi from SYM and set
the controls according to the values of the confounding variables for vi. Then, for each of
NVD, EDB, and EKITS, we randomly select, with replacement, a sample vulnerability
svi that satisfies the conditions defined by vi. We then include svi in the list of selected
vulnerabilities for that dataset sample. We repeat this procedure for all vulnerabilities
in SYM. The sampling has been performed with the statistical tool R-CRAN [R Core
Team 2012]. Our R script to replicate the analysis is available on our Lab’s webpage.9

Execution. Once we collected our samples, we compute the frequency with which each
risk factor identifies a vulnerability in SYM. Our output is represented in Table VII.
Each risk factor is defined by a CVSS threshold level t in combination with the existence
of a proof-of-concept exploit (v ∈ EDB) or of a black-marketed exploit (v ∈ EKITS).
Examples of thresholds for different risk factors are reported in Table VIII. We run
our experiment for all CVSS thresholds ti with i ∈ [1..10]. For each risk factor, we
evaluate the number of vulnerabilities in the sample that fall above and below the CVSS
threshold, and that are included (or not included) in SYM: the obtained table reports
the count of vulnerabilities that each risk factor correctly and incorrectly identifies as
‘at high risk of exploit’ (∈ SYM) or ‘at low risk of exploit’ (�∈ SYM).

The computed values depend on the random sampling process. In an extreme case,
we may therefore end up, just by chance, with a sample containing only vulnerabilities
in SYM and below the current threshold (i.e., [a = 0; b = 0; c = 1277; d = 0]). Such
an effect would be likely due to chance alone. To mitigate this, we repeat, for every
risk factor, the whole experiment run 400 times and keep the median of the results.
We choose this limit because we observed that around 300 repetitions the distribution
of results is already markedly Gaussian. Any statistic reported in this article is to be
intended as the median of the generated distribution of values.

4.2. Parameters of the Analysis

Sensitivity and Specificity. In the medical domain, the sensitivity of a test is the
conditional probability of the test giving positive results when the illness is present.
The specificity of the test is the conditional probability of the test giving negative result
when there is no illness. Sensitivity and specificity are also known as True Positive Rate
(TPR) and True Negatives Rate (TNR), respectively. High values for both TNR and TPR

9https://securitylab.disi.unitn.it/doku.php?id=software.
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Fig. 5. Sensitivity (solid line) and specificity (dotted line) levels for different CVSS thresholds. The red line
identifies the threshold for PCI DSS compliance (cvss = 4). The green line identifies the threshold between
LOW and MEDIUM+HIGH vulnerabilities (cvss = 6, see histogram in Figure 1).

identify a good test.10 In our context, we want to assess to what degree a positive result
from our current test (the CVSS score) matches the illness (the vulnerability being
actually exploited in the wild and tracked in SYM). The sensitivity and specificity
measures are computed as

Sensitivity = P(v’s Risk factor above t| v ∈ SYM) = a/(a + c), (2)
Specificity = P(v’s Risk factor below t| v �∈ SYM) = d/(b + d), (3)

where t is the threshold. Sensitivity and specificity outline the performance of the test
in identifying exploits, but say little about its effectiveness in terms of diminished risk.

Risk Reduction. To understand the effectiveness of a policy, we adopt an approach
similar to that used in Evans [1986] to estimate the effectiveness of seat belts in
preventing fatalities. In Evan’s case, the effectiveness was given by the difference in
the probability of having a fatal car crash when wearing a seatbelt and when not
wearing it (Pr(Death & Seat belt on) − Pr(Death & not Seat belt on)).

In our case, we measure the ability of a risk factor to predict the actual exploit in the
wild. Formally, the risk reduction is calculated as

RR = P(v ∈ SYM|v’s Risk factor above t) − P(v ∈ SYM|v’s Risk factor below t); (4)

therefore, RR = a/(a + b) − c/(c + d). A high risk reduction identifies risk factors that
clearly discern between high-risk and low-risk vulnerabilities, and are therefore good
decision variables to act upon: the most effective strategy is identified by the risk factor
with the highest risk reduction.

4.3. Data Analysis

Sensitivity and Specificity. Figure 5 reports the sensitivity and specificity levels re-
spective to different CVSS thresholds. The solid line and the dotted line report the
Sensitivity and the Specificity, respectively. The vertical red line marks the CVSS

10Some may prefer the False Positive Rate (FPR) to the TNR. Note that TNR=1-FPR (as in our case,
d/(b + d) = 1 − b/(b+ d)). We choose to report the TNR here because (1) it has the same direction of the TPR
(higher is better); (2) it facilitates the identification of the threshold with the best trade-off by intersecting
TPR.
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Fig. 6. Risk reduction (RR) entailed by different risk factors.

threshold fixed by the PCI DSS standard (cvss = 4). The green vertical line marks
the threshold that separates LOW CVSS vulnerabilities from MEDIUM+HIGH CVSS vul-
nerabilities (cvss = 6). Unsurprisingly, low CVSS scores show a very low specificity,
as most non-exploited vulnerabilities are above the threshold. With increasing CVSS
thresholds, the specificity measure gets better without sensibly affecting sensitivity.
The best trade-off obtainable with the sole CVSS score is achieved with a threshold of
eight, where specificity grows over 30% and sensitivity sets at around 80%. To further
increase the threshold causes the sensitivity measure to collapse. In EKITS, because
most vulnerabilities in the black markets are exploited and their CVSS scores are high,
the specificity measure can not significantly grow without collapsing sensitivity.

Risk Reduction. In Figure 6, we report our results for risk reduction (RR). The mere
CVSS score (green squares), irrespectively of its threshold level, always defines a poor
patching policy with very low risk reduction. The existence of a public proof-of-concept
exploit is a good risk factor, yielding higher risk reduction levels (40%). The presence
of an exploit in the black markets is the most effective risk factor to consider.

Table IX reports the numerical Risk Reduction for a sample of thresholds. The full
list of results is available in the online Appendix, Table X. A CVSS score of six entails a
Risk Reduction of 4%; the performance is slightly better, but still unsatisfactory, if the
threshold is raised to nine. Overall, CVSS’ Risk Reduction stays below 10% for most
thresholds. Even by considering the 95% confidence interval, we can conclude that
CVSS-only based policies may be unsatisfactory from a risk-reduction point of view.
Unsurprisingly, the test with the CVSS score alone results in very high p-values that,
in this case, testify that CVSS as a risk factor does not mark high risk vulnerabilities
any better than random selection would.

The existence of a proof-of-concept exploit (PoC) improves greatly the performance
of the policy: with ‘CVSS ≥ 6 + PoC’ a RR of 42% can be achieved with very high
statistical significance. This result is comparable to wearing a seat belt while driving,
which entails a 43% reduction in risk [Evans 1986]. The highest risk reduction (80%)
is obtained by considering the existence of an exploit in the black markets.

5. DISCUSSION

We now summarize the main observations of our study. We focus on our results on
CVSS characteristics and risk reduction.
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Table IX. Risk Reduction for a Sample of Thresholds

Risk factor threshold RR 95% RR conf. int. Significance

CVSS ≥6 4% −5% ; 12%
CVSS ≥6 + PoC 42% 38% ; 48% ****
CVSS ≥6 + Bmar 80% 80% ; 81% *
CVSS ≥9 8% 1% - 15%
CVSS ≥9 + PoC 42% 36% - 49% ****
CVSS ≥9 + Bmar 24% 23% - 29%

Note: Risk Reduction of vulnerability exploitation depending on pol-
icy and information at hand (CVSS, PoC, Markets). Significance is
reported by a Bonferroni-corrected Fisher Exact test (data is sparse)
for three comparison (CVSS vs. CVSS+PoC vs. CVSS+BMar) per ex-
periment [Bland and Altman 1995]. ****indicates the Bonferroni-
corrected equivalent of p < 1E − 4; ***p < 0.001; **p < 0.01;
*p < 0.05; nothing is reported for other values. Non-significant re-
sults indicate risk factors that perform indistinguishably at marking
‘high risk’ vulnerabilities than random selection. The full set of re-
sults is available in the online Appendix, Table X.

(1) The CVSS Impact submetric assumes only a few of the possible values: Confidential-
ity and Integrity losses usually go hand-in-hand. The Availability CVSS assessment
adds very little variability to the score, so of the three dimensions of the Impact
subscore, only two are effectively relevant.

(2) The CVSS Exploitability metric reveals little to no variability. The only variability
in CVSS Exploitability among the great majority of vulnerabilities in NVD is given
by the Access Complexity variable. Authentication and Access Vector show very
little (Access Vector) or almost none (Authentication) variability. The effect of this
is that the Exploitability submetric results flattened around very high values.
Consequently, the Exploitability submetric is not suitable to characterize ‘likelihood
of exploit’.

(3) The CVSS base score alone is a poor risk factor from a statistical perspective. Our
results indicate that policies based on CVSS scores, such as the U.S. Government
NIST SCAP protocol or the world-wide used PCI DSS may not be effective in provid-
ing significant risk reductions. Our results demonstrate that using the CVSS score
as a selection criterion is statistically indistinguishable from randomly picking
vulnerabilities to fix.

By considering risk factors other than the sole CVSS score, it may be possible to
obtain more effective (and statistically significant) strategies.

(1) The existence of a proof-of-concept exploit is an interesting risk factor to consider.
PoC-based policies can entail risk reductions up to 45% of the original risk.

(2) The black markets are an even more important source of risk. Our results show
that the inclusion of this risk factor can increase risk reduction up to 80%.

Our methodology is useful for both academic and industry practitioners. A case-
control study could be the methodology of choice when randomized trials and controlled
experiments can not be performed. For example, one can not ask users to stay vulner-
able and see if they get a virus or a network attack.11 On the negative side, it has less
power to determine causality than controlled experiments have, because it looks back-
wards rather than directly controlling an experimental process. Yet, the methodology

11Using honeynets for experiments would not give a controlled experiment either as they are artificial and
not actually used.

ACM Transactions on Information and System Security, Vol. 17, No. 1, Article 1, Publication date: August 2014.



1:16 L. Allodi and F. Massacci

is appropriate for evaluating the strength of the correlation between an observation
of interest and some hypothesized risk factor/explanatory variable one may consider.
Many of the risk factors we consider (such as CVSS, proof-of-concept exploits, etc.) are
the de-facto standards in industry, generating a multimillion business (a casual walk
among the stands of BlackHat or RSA vendors would make it immediate). Evidence of
the effectiveness of these metrics is however unclear, and case-control studies could be
a sound scientific method for evaluating the relevance of any risk factor by using the
very data that industry has available.

Additionally, security data has multiple limitations that should be carefully consid-
ered when performing related studies. An overview of these problematics is given in
Christey and Martin [2013]. The most important advantage of the presented method-
ology is that it allows the researcher to control the different factors that may influence
the outcome of the observation of interest. By design, any residual noise is evened-out
by randomization in both the selection of the sample vulnerability and the bootstrap-
ping procedure. Our results can be tailored around specific case studies by plugging
into the methodology any risk factor, cost, time-to-deploy, or organizational effort that
are relevant to the case in analysis.

6. THREATS TO VALIDITY

Construct Validity. Data collection is a main issue in an empirical study. SYM and
EKITS may be particularly critical to the soundness of our conclusions. Because of
the unstructured nature of the original SYM dataset, building SYM required us to
take some preliminary steps. The main issue is that the collected CVEs may not be
relevant to the reported threat. To address this issue, we proceeded in two steps. First,
we manually analyzed a random selection of about 50 entries and checked for the
relevance of the CVE entries to the actual attack described in the signature. Second,
we contacted Symantec in an informal communication to double-check our analysis
results.

For EKITS, due to the shady nature of the tools, the list of exploited CVEs may not
be representative of the population of CVEs in the black markets; moreover, criminals
may falsely report what CVEs their tools attack (e.g. to increase sells). To mitigate
the problem, we crossed-referenced EKITS entries with knowledge from the security
research community and from our direct testing of tools traded in the the black markets
[Allodi et al. 2013].

External validity is concerned with the applicability of our results to real-world
scenarios. Symantec is a world-wide company and a leader in the security industry. We
are therefore confident in considering their data as representative of real-world attack
scenarios. Yet, our conclusion can not be generalized to targeted attacks. These attacks
in the wild usually target a specific platform or system and are less likely to generate
an entry in a general-purpose antivirus product.

An important point to mention is that our approach does not address the changing
behavior of the attacker. For example, if all vulnerabilities from the black markets
with a certain characteristic get patched, the attacker may simply modify his own
attack strategy to make the defender’s strategy ineffective. This is a common problem
in any game-theoretical approach: unfortunately, the defender ought to move first,
and therefore the attacker can always adapt to the defender’s strategy (hence the
definition of equilibrium as the state of the game in which neither the attacker nor the
defender have a good reason to change their strategy). This problem is common to any
security technology or security solution. We keep the exploration of this issue for further
work.
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7. RELATED WORK

Vulnerability Studies. Several studies before ours have dealt with software vulnera-
bilities, software risk, and risk mitigation. Among all, Frei et al. [2006] were maybe the
first to link the idea of life-cycle of a vulnerability to the patching process. Their dataset
was a composition of NVD, OSVDB (the Open Source Vulnerabiltity DataBase), and
FVDB (Frei’s Vulnerability DataBase, obtained from the examination of security advi-
sories for patches). The life-cycle of a vulnerability includes discovery time, exploitation
time, and patching time. They showed that exploits are often quicker to arrive than
patches are. They were the first to look, in particular, at the difference in time between
time of first exploit and time of disclosure of the vulnerability. This work has recently
been extended by Shahzad et al. [2012], who presented a comprehensive vulnerability
study on NVD and OSVDB datasets (and Frei’s) that included vendors and software in
the analysis. Many descriptive trends in timings of vulnerability patching and exploita-
tion are presented. However, their use of exploit data from OSVDB says little about the
actual exploitation of a vulnerability [Christey and Martin 2013]. NVD timing data has
also been reported to generate an unforeseeable amount of noise because of how the
vulnerability disclosure process works [Schryen 2009; Christey and Martin 2013]. To
avoid these problems, we use data on actual exploits in the wild and carefully account
for its limitations. Instead of directly comparing different populations of vulnerabili-
ties, we first provide a descriptive analysis of our data and then use our findings to run
our case control study for vulnerabilities and exploits. For a thorough description of
our datasets and a preliminary discussion on the data, see Allodi and Massacci [2012];
for additional details on Symantec’s attack data, we point the reader to Dumitras and
Shou [2011].

The idea of using vulnerability data to assess overall security is not new by itself.
Attack surfaces [Manadhata and Wing 2011] and attack graphs [Wang et al. 2008]
are seminal approaches to the problem: the former uses vulnerability data to com-
pute an ‘exposure metric’ of the vulnerable systems to potential attacks; the latter
aims at modeling consequent attacks on a system (or network of systems) the attacker
might perpetrate to reach a (usually critical) component, such as a data server. These
approaches however lack characterization of vulnerability risk. Our methodology inte-
grates these approaches by providing a risk estimation for vulnerabilities; our results
can be plugged in both attack graphs and attack surface estimations to obtain more
precise assessments.

CVSS. An analysis of the distribution of CVSS scores and subscores has been pre-
sented by Scarfone and Mell [2009] and Gallon [2011]. However, while including CVSS
subscore analysis, their results are limited to data from NVD and do not provide any
insight on vulnerability exploitation. In this sense, Bozorgi et al. [2010] were probably
the first to look for this correlation. They showed that the CVSS characterization of
‘likelihood to exploit’ did not match with data on proof-of-concept exploits in EDB. We
extended their first observation with an in-depth analysis of subscores and of actual
exploitation data.

Vulnerability Models. Other studies focused on the modeling of the vulnerability
discovery processes, which arguably lays the groundwork for the ‘vulnerability reme-
diation’ process, focus of our work. As noted by Shin and Williams [2013], vulnerability
models can help “security engineers to prioritize security inspection and testing efforts”
by, for example, identifying software components that are most susceptible to attacks
[Gegick et al. 2009] or most likely to have unknown vulnerabilities hidden in the code
[Neuhaus et al. 2007]. Our contribution differs, in general, from work on vulnerabil-
ity models in that we do not aim at identifying ‘vulnerable components’ or previously
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unknown vulnerabilities to point software engineers in the right direction. We instead
propose a methodology for evaluating the risk of already known vulnerabilities to be
exploited in the wild, that may therefore need immediate remediation or mitigation on
the deployment side rather than on the development side.

Alhazmi and Malaiya [2008] and Ozment [2007] are both central in vulnerability
discovery models research. Alhazmi and Malaiya fit six vulnerability models to vul-
nerability data of four major operative systems and show that Alhazmi’s ‘S shaped’
model is the one that performs the best. Shin and Williams [2013] suggest that vul-
nerability models might be substituted with fault prediction models, and showed that
performances in terms of recall and precision do not differ sensibly between the two.
However, as previously underlined by Ozment [2007], vulnerability models may rely on
unsound assumptions, such as the independence of vulnerability discoveries. Current
vulnerability discovery models are indeed not general enough to represent trends for
all software [Massacci and Nguyen 2012]. Moreover, vulnerability disclosure and dis-
covery are complex processes [Ozment 2005; Clark et al. 2010], and can be influenced
by {black/white}-hat community activities [Clark et al. 2010] and economics [Miller
2007].

Markets for Vulnerabilities. Our analysis of vulnerabilities traded in the black mar-
kets is also interesting because it supports the hypothesis that the exploit markets are
significantly different (and more stable) than were the previous IRC markets run by
cyber criminals [Herley and Florencio 2010]. Previous work from the authors of this
manuscript also experimentally showed that the goods traded in the black markets are
very reliable in delivering attacks and are resilient to aging [Allodi et al. 2013].

8. CONCLUSION

In this article, we have proposed the case-control study methodology as an operative
framework for security studies. In a case-control study, the researcher looks backward
at some of the cases (e.g., vulnerabilities exploited in the wild) and compares them with
controls (in our case, randomly selected vulnerabilities with similar characteristics,
such as year of discovery or software type). The purpose is to identify whether some
risk factor (in our scenario, a high CVSS score, or the existence of a proof of concept
exploit) is a good explanation of the cases and therefore represents a decision variable
upon which the system administrator must act.

To illustrate the methodology, we first analyzed how the CVSS score expresses the
Impact and the Likelihood of an exploitation to happen. We showed that a proper
characterization of ‘likelihood of exploit’ is not present in the CVSS score. We then
evaluated its performances as a ‘risk indicator’ by performing a case-control study,
in which we sample the data at hand to test how the CVSS score correlates with
exploitation in the wild. Our results show that the CVSS base score never achieves
high rates of identified true positives (sensitivity) simultaneously with a high rate of
true negatives (specificity).

Finally, we showed how the methodology could be used to evaluate the effectiveness
of multiple policies that consider different risk factors. Our results show that the sole
CVSS score performs no better than randomly picking vulnerabilities to fix and may
lead to negligible risk reductions. Markedly better results could instead be obtained
when additional risk factors are considered; in this study, we considered the existence
of a proof-of-concept exploit and of an exploit traded in the black markets.

In future work, we plan to integrate our methodology with additional evaluation
factors, such as the cost of a strategy or the criticality of the assets. Another interesting
venue would be to apply our methodology to other domains (e.g., critical infrastructures
and targeted attacks).
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