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Adversarial Risk Analysis for

Counterterrorism Modeling

Jesus Rios1 and David Rios Insua2

Recent large scale terrorist attacks have raised interest in models for resource allocation
against terrorist threats. The unifying theme in this area is the need to develop methods
for the analysis of allocation decisions when risks stem from the intentional actions of
intelligent adversaries. Most approaches to these problems have a game theoretic flavor
although there are also several interesting decision analytic based proposals. One of
them is the recently introduced framework for adversarial risk analysis, which deals with
decision making problems that involve intelligent opponents and uncertain outcomes. We
explore how adversarial risk analysis addresses some standard counterterrorism models:
simultaneous defend-attack models, sequential defend-attack-defend models and sequential
defend-attack models with private information. For each model, we first assess critically
what would be a typical game theoretic approach and then provide the corresponding
solution proposed by the adversarial risk analysis framework, emphasizing how to
coherently assess a predictive probability model of the adversary’s actions, in a context in
which we aim at supporting decisions of a defender versus an attacker. This illustrates the
application of adversarial risk analysis to basic counterterrorism models that may be used
as basic building blocks for more complex risk analysis of counterterrorism problems.

KEY WORDS: adversarial risk analysis, counterterrorism resource allocation, defender-
attacker models, intelligent adversary, elicitation of attack probabilities

1. INTRODUCTION

Appropriate responses to terrorism represent one
of the key challenges for states in this century (1,2).
Indeed, after recent large scale terrorist attacks,
multi-billion euro investments are being made to
increase safety and security. This has stirred public
debate about the convenience of such measures. In
turn, this has motivated a great deal of interest in
modeling issues in relation with counterterrorism,
with varied techniques and tools from fields such as
reliability analysis, data mining or complex dynamic
systems. Recent accounts of various techniques
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and applications may be seen in Ezell et al. (3),
Gutfraind(4) and Wein(5). Parnell et al. (6) and
Enders and Sandler (7) provide outstanding overviews
on strategies, models and research issues in terrorism
risk analysis, with challenges cutting across many
fields, from Political Science to Operations Research
and Management Science.

The key feature of these problems is the
presence of two or more intelligent opponents who
make decisions whose outcomes are uncertain and
interdependent. Thus, it is no wonder that much of
this research has reminiscent game theoretic and risk
analytic flavors. The role of standard risk analysis in
the management of terrorism risks has been discussed
in Deisler (8). Also, Garrick (9) points out some of the
challenges associated with extending standard risk
assessment methods for the analysis of threats from
terrorist acts. Dillon et al. (10) describe a decision
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making framework based on risk analysis principles
for allocating anti-terrorism resources using risk
scores. Ezell et al. (3) defend the use of traditional
probabilistic risk assessment methods like event trees
to estimate terrorism risks. These approaches, based
on the direct application of conventional risk analysis
methods to terrorism risk management, have been
criticized by Cox (11) and Brown and Cox (12), who
warn about the inappropriateness of modeling the
actions from terrorists in essentially in the same way
that random adverse events in natural or engineered
systems.

On the other hand, there is a rich literature
in political sciences and economics regarding game
theory and terrorism, though it places little emphasis
on risk analysis aspects, see e.g. Siqueira and
Sandler (13), Arce and Sandler (14), and Powell (15).
Recent relevant references with a game-theoretic
flavor in the OR/MS literature, include Zhuang
and Bier (16), who compute best responses and
Nash equilibria as a basis for allocating resources
against terrorism, in situations of both simultaneous
and sequential play; and various papers by Brown,
Carlyle, Wood and Salmeron(17,18,19), who present
bilevel (max-min, min-max) and trilevel (min-max-
min) optimization models for three stylized countert-
errorism models such as defender-attacker, attacker-
defender and defender-attacker-defender problems.
Kardes (20) surveys various approaches to strategic
decision making in the presence of adversaries,
arguing for the use of robust stochastic games to deal
with counterterrorism, pointing out the difficulty in
assessing what the adversary aims at doing in this
context. The book edited by Bier and Azaiez (21)

contain many papers on the attacker-defender model
and several variants and applications. Insights com-
bining risk analysis and game theory can be found in
Hausken (22) and Cox (23).

A thread in the above game theoretic approaches
is the common knowledge assumption, criticized, e.g.
in Raiffa et al. (24). Most versions of game theory
assume that the opponents not only know their own
payoffs, preferences, beliefs, and possible actions,
but also those of their opponents. Moreover, when
there is uncertainty in the game, it is assumed
that players have common probabilities over the
uncertain variables. This strong common knowledge
assumption allows a symmetric joint normative
analysis in which players try to maximize their
expected utilities (and expect the other players to
do the same). Therefore, their decisions can be
anticipated and are predated by Nash equilibria

concepts. However, in counterterrorism contexts,
players will not typically have full knowledge of their
opponent’s objectives, beliefs and possible moves.
This is aggravated as participants try to conceal
information.

The other mainstream literature in the field has
a decision analytic flavor. Among others, Pinker (25)

uses qualitative influence diagrams to assess short
and long-term deployment of countermeasures; Mer-
rick and McLay (26) use decision trees and influence
diagrams from the point of view of the defender to
model the decision of installing radiation sensors to
screen cargo containers against terrorist radiological
threats; and Parnell et al.(27) describe canonical
terrorist multi-objective decision trees and influence
diagrams to evaluate bioterrorist threats. Their
recurrent issue is the difficulty in assessing the
probabilities over the actions of the adversaries,
which is the key objection, see Harsanyi (28), to
the Bayesian approach to games, introduced by
Kadane and Larkey (29) and Raiffa (30,24). Banks and
Anderson (31) provide a numerical comparison of
classical and Bayesian approaches to games within
a smallpox attack problem.

Paté-Cornell and Guikema (32) present an in-
teresting perspective, suggesting to address the
problem of assessing the probabilities of possible
attacks by modeling the Attacker’s problem from
the point of view of the Defender, based on point
estimates of the Attacker’s probabilities and utilities.
Then, they assess the expected utilities of the
Attacker’s actions and estimate the probabilities
of these actions as proportional to the Attacker’s
perceived expected utilities. This approach does not
take proper account of the fact that the (idealized)
Attacker is an expected utility maximizer and, thus,
would certainly choose the optimal action. Another
possibility would be to undertake a sensitivity
analysis approach, see Rios Insua and Ruggeri (33),
taking into account our imprecision about the likely
actions of our adversary. This is the venue adopted by
von Winterfeldt and O’Sullivan(34) within a simple
decision tree to evaluate Man-Portable Air Defense
Systems countermeasures. This may be too involved
computationally in complex problems.

We introduced(35) the framework of Adversarial
Risk Analysis (ARA) to cope with the risk analysis
of situations in which risks stem from the deliberate
actions of intelligent adversaries. The main applica-
tion in that paper was geared towards auctions. ARA
lies somewhat between both approaches mentioned
above, with a Bayesian game theoretic flavor. In
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supporting one of the participants, the problem is
viewed as a decision analytic one, but principled
procedures which employ the adversarial structure,
and other information available, are used to assess
probabilities on the opponents’ actions. In order
to obtain a (probabilistic) descriptive model of
how the opponents will behave, incorporating an
analysis of how they think about their decision
problem, we assume that opponents are expected
utility maximizers, but see §5 for a discussion of this
assumption. The uncertainty in adversaries’ actions
stems from the uncertainty about their utilities and
probabilities when used to analyze their decision
making problems. The potentially infinite analysis of
nested decision models arrived at when using ARA
is avoided in the game theoretic approach by using
the common (prior) knowledge assumption. But, as
mentioned, this is at the cost of a strong unrealistic
assumption, which would invalidate the analysis
when it comes to most counterterrorism applications.
We prefer to be realistic and accommodate as much
information as we can from intelligence into the
analysis, through a structure of nested decision
models, and stop when no more information can be
accommodated. We then conclude the recursion of
decision models with a noninformative probability
distribution, which needs to pass some sensitivity
analysis test before the whole analysis is considered
appropriate.

In this paper, we show the relevance of ARA in
supporting one of the participants, which we shall
call the Defender, when analyzing three important
stylized counterterrorism resource allocation models:
the simultaneous defend-attack model; the sequen-
tial defend-attack-defend model and the sequential
defend-attack model with private information. Our
choice of these three models is due to the fact that,
as we shall discuss, we may view them as basic model
building blocks for more complex counterterrorism
problems on one hand, and, on the other, because
they have been studied in considerable detail in
the literature from a standard game theoretic
perspective.

For each of these three models, we first de-
scribe the basic problem through coupled influence
diagrams and game trees. We then assess critically
what would be the typical game theoretic approach
for such problem based on a Nash equilibrium
concept, or some refinement thereof. We then provide
the corresponding ARA solution, emphasizing how
we may coherently assess the probabilities of the
Attacker’s actions, in a context in which we aim

at supporting decisions of the Defender versus the
Attacker. Simple examples illustrate some of the
assessments and computational intricacies for the
ARA approach. However, our main interest here is
in the novel conceptual framework, leaving aside
computational and algorithmic issues for later work.
We end up with some discussion and conclusions.

2. SIMULTANEOUS DEFEND-ATTACK

MODELS

We start by discussing the simultaneous defend-
attack model: a Defender (she, D) and an Attacker
(he, A) decide their defense and attack, respectively,
without knowing the action chosen by each other.
See Zhuang and Bier (16) for a related discussion.
As an example, imagine a case in which the FAA
decides whether to introduce undercover marshals
in an airplane that might, or not, be hijacked by
terrorists.

We shall assume that the adversaries have
discrete alternative sets D = {d1, d2, ..., dm} and
A = {a1, a2, ..., ak} of defenses and attacks, respec-
tively. We shall also assume that the only relevant
uncertainty is S, denoting the success (S = 1) or
failure (S = 0) of an attack. Each decision maker
assesses differently the probability of the result of
an attack, which depend on the defense and attack
adopted: pD(S = s | d, a) and pA(S = s | d, a).
The utility function of the Defender uD(d, s) depends
on her chosen defense and the result of the attack.
Similarly, the Attacker’s utility function is uA(a, s).
This situation can be represented by two coupled
influence diagrams (one for the Defender, one for the
Attacker) with a shared uncertainty node associated
with the attack success, as in Fig. 1. We also show
a game tree for this problem, with just two possible
attacks and defenses, to simplify the figure.

2.1 A Game Theoretic Analysis

Under the common knowledge assumption, pref-
erences and beliefs from both the Defender and
the Attacker, (uD, pD) and (uA, pA) respectively,
are disclosed. Therefore, each adversary knows the
expected utility that each pair (d, a) ∈ D ×A would
provide to both of them, computed through

ψD(d, a) =pD(S = 0 | d, a) uD(d, S = 0) +

pD(S = 1 | d, a) uD(d, S = 1),
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(a) Influence diagram

(b) Game tree (m = k = 2)

Fig. 1. The simultaneous Defend-Attack model

and, similarly,

ψA(d, a) =pA(S = 0 | d, a) uA(a, S = 0) +

pA(S = 1 | d, a) uA(a, S = 1).

A Nash equilibrium (d∗, a∗) for this game would
satisfy

ψD(d∗, a∗) ≥ ψD(d, a∗) ∀ d ∈ D and

ψA(d∗, a∗) ≥ ψA(d∗, a) ∀ a ∈ A.

Finding Nash equilibria may require the use of
randomized strategies (36). There could be several
equilibria with no unambiguous criteria to further
discern among them (24).

If utilities and probabilities are not common
knowledge among the adversaries, a game-theoretic
approach proceeds by modeling the game as one
with incomplete information(37), introducing the
notion of player types: each player will be of a
certain type which is known to him but not to
his opponent. Thus, a player’s type represents the
private information he may have. The Defender’s

type τD ∈ TD determines her utility uD(d, s, τD)
and probability pD(S = s | d, a, τD). Similarly, for
the Attacker’s types τA ∈ TA. Harsanyi proposes the
Bayes-Nash equilibrium as a solution concept, under
a still strong common knowledge assumption: the
adversaries’ beliefs about the opponent’s types are
common knowledge and modeled through a common
prior distribution π(τD, τA). Moreover, it is assumed
that the players’ beliefs about other uncertainties in
the problem are also common knowledge. Then, the
solution is computed as follows.

Define, first, the notion of strategy functions for
the participants. These associate a decision with each
type, d : τD → d(τD) ∈ D and a : τA → a(τA) ∈
A. The Defender’s expected utility associated with a
pair of strategy functions, given any of her privately
known types τD ∈ TD, is

ψD(d(τD), a, τD) =

∫

[

∑

s∈S

uD(d(τD), s, τD)

pD(S = s | d(τD), a(τA), τD)
]

π(τA | τD) dτA.

Similarly, we can compute the Attacker’s expected
utility ψA(d, a(τA), τA) for a pair of strategy func-
tions (d, a), given any of his privately known types
τA ∈ TA. Then, a Bayes-Nash equilibrium is a pair
(d∗, a∗) of strategy functions, respectively, for the
Defender and the Attacker satisfying

ψD(d∗(τD), a∗, τD) ≥ ψD(d(τD), a∗, τD), ∀ τD and

ψA(d∗, a∗(τA), τA) ≥ ψA(d∗, a(τA), τA), ∀ τA

for every d and every a, respectively. Again random-
ized strategies might be required to possibly find an
equilibria.

We believe that the underlying common prior
(knowledge) assumption is still counterintuitive and
unrealistic, specially in the context of counterterror-
ism: it implies that players need to disclose, inter alia,
their true beliefs about their opponent’s type, as well
as their private probabilistic assessments in order to
be able to compute a Bayes-Nash equilibrium.

2.2 The ARA Approach

More realistically, we weaken the common (prior)
knowledge assumption. We assume that we support
the Defender in solving the simultaneous Defend-
Attack model. As reflected in Fig. 2, the Defender
has to choose a defense d ∈ D, whose consequences
depend on the success of an attack a ∈ A
simultaneously chosen by the Attacker, which is,
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(a) Influence diagram

(b) Decision tree (m = k = 2)

Fig. 2. The Defender’s decision analysis

therefore, uncertain for the Defender at the time she
makes her decision.

By standard decision theory, the Defender should
maximize her expected utility (38). The Defender
knows her utility function uD(d, s) and her proba-
bility assessment pD over S, conditional on (d, a).
However, she does not know the Attacker’s decision
a at node A. She expresses her uncertainty through
a probability distribution πD(A = a). Then, the
optimization problem she should solve is

d∗ = arg max
d∈D

∑

a∈A

[

∑

s∈{0,1}

uD(d, s)

pD(S = s | d, a)

]

πD(A = a). (1)

The Defender thus needs to assess πD(A). To do so,
suppose she thinks that the Attacker is an expected
utility maximizer who tries to solve the decision
problem shown in Fig. 3. The Attacker would look for
the attack a ∈ A providing him maximum expected

(a) Influence diagram

(b) Decision tree (m = k = 2)

Fig. 3. The Attacker’s decision analysis, as seen by the
Defender

utility:

a∗ = arg max
a∈A

∑

d∈D

[

∑

s∈{0,1}

uA(a, s)

pA(S = s | d, a)

]

πA(D = d). (2)

In general, the Defender will be uncertain about
the Attacker’s utility function and probabilities
(uA, pA, πA) required to solve such problem. Suppose
that we model all information available to the
Defender about (uA, pA, πA) through a probability
distribution (UA, PA,ΠA). Then, and this will aid
us in assessing πD(A), mimicking the argument
in (2), we propagate such uncertainty to compute
the following probability distribution

A | D ∼ argmax
a∈A

∑

d∈D

[

∑

s∈{0,1}

UA(a, s)

PA(S = s | d, a)

]

ΠA(D = d). (3)
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Note now that (UA, PA) could be directly elicited
from the Defender. However, the elicitation of ΠA(D)
may require further analysis leading to the next level
of recursive thinking: the Defender would need to
think about how the Attacker analyzes her problem.
This is why we condition in (3) by (the distribution
of) D. Note that ΠA(D) incorporates two sources of
uncertainty:

• the Attacker’s uncertainty about the De-
fender’s choice, represented through his beliefs
πA(D), and

• the Defender’s uncertainty about the proba-
bilistic model πA used by the Attacker to pre-
dict what the Defender will choose, assessed
from the Defender’s perspective through πA ∼
ΠA.

In the above, the Defender presumes that the
Attacker thinks she is an expected utility maximizer
trying to solve a decision problem like the one
described in Fig. 2. Therefore, in order for the
Defender to assess the distribution (3), she will elicit
(UA, PA) ∼ F from her viewpoint, and assess ΠA(D)
through the analysis of her decision problem, as
thought by the Attacker, mimicking the resolution
of problem (1) from the Attacker’s perspective. This
reduces the assessment of ΠA(D) to the computation
of the distribution

D | A1 ∼ arg max
d∈D

∑

a∈A

[

∑

s∈{0,1}

UD(d, s)

PD(S = s | d, a)

]

ΠD(A1 = a), (4)

assuming the Defender is able to assess ΠD(A1),
where A1 represents the Attacker’s decision within
the Defender’s second level of recursive thinking:
the nested decision model used by the Defender
to predict the Attacker’s analysis of her decision
problem. To assess the distribution (4), the Defender
needs to elicit (UD, PD) ∼ G, representing her
probabilistic knowledge about how the Attacker
may estimate her utility function uD(d, a) and her
probability pD over S|d, a, when she analyzes how the
Attacker thinks about her decision problem. Again,
the elicitation of ΠD(A1) might require further
recursive thinking from the Defender. This would
lead to the recursive assessments:

Repeat from i = 1
Find ΠDi−1(Ai) by solving

Ai | Di ∼ arg max
a∈A

X

d∈D

2

4

X

s∈{0,1}

U i
A(a, s)

P i
A(S = s | d, a)

3

5 ΠAi(D
i = d)

with (U i
A, P

i
A) ∼ F i

Find ΠAi(Di) by solving

Di | Ai+1 ∼ arg max
d∈D

X

a∈A

2

4

X

s∈{0,1}

U i
D(d, s)

P i
D(S = s | d, a)

3

5 ΠDi(A
i+1 = a)

with (U i
D, P

i
D) ∼ Gi

i = i+ 1

To simplify the discussion, we have assumed that
the recursive decision models used to assess Ai and
Di are a reflection of each other and have the same
structure as in Figs. 3 and 2, respectively. Moreover,
the choice sets for the Defender and the Attacker
are the same in all the recursive models: D and A,
respectively.

This hierarchy of nested models would stop at a
level in which the Defender lacks the information nec-
essary to assess the distribution F i or Gi associated
with the decision analysis of Ai and Di, respectively.
At this point, the Defender would holistically assign
an unconditional probability distribution over Ai

or Di, respectively, without going deeper in the
hierarchy, summarizing all remaining information
she might have through the direct assessment of
ΠDi−1(Ai) or ΠAi(Di), as might correspond. Of
course, should she feel that she has no information
available to do so, she could assign a noninformative
distribution(38).

We illustrate the ARA approach to this model
with a simple numerical example.

Example. The DHS (the Defender) is consid-
ering whether to use (d1) or not (d2) undercover
marshals in all flights over the US territory to prevent
terrorists from hijacking airplanes. The terrorists
(the Attacker) will not know the action chosen by
the Defender in their analysis about whether to try
(a1) or not (a2) to hijack an airplane. We assume
that we are able to assess from the Defender:
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Table I . Defender’s assessments

(a) uD(d, s)

s = 1 s = 0

d1 0 80
d2 10 100

(b) pD(S = 1 | d, a)

a1 a2

d1 0.1 0
d2 0.8 0

(c) UAI
(a, s)

s = 1 s = 0

a1 Tri(50, 100, 100) 0
a2 100 Tri(0, 0, 50)

(d) PAI
(S = 1 | d, a)

a1 a2

d1 U(0, 0.5) 0
d2 U(0.5, 1) 0

(e) UAII
(a, s)

s = 1 s = 0

a1 Tri(0, 100, 100) 0
a2 100 Tri(0, 0, 100)

(f) PAII
(S = 1 | d, a)

a1 a2

d1 Tri(0, 0, 0.5) 0
d2 Tri(0.5, 1, 1) 0

(g) UDI
(d, s)

s = 1 s = 0

d1 U(0, 40) U(60, 100)
d2 U(0, 40) U(60, 100)

(h) PDI
(S = 1 | d, a)

a1 a2

d1 U(0, b) 0
d2 b ∼ U(0, 1) 0

Note: Tri(min,mode,max) and U(min,max) stand, respectively, for triangular and uniform distributions.

• Her utility function uD(d, s), which incor-
porates the increase in security, the costs,
as well as other possible consequences, and
her probability distribution pD(S = s|d, a)
associated with her decision problem (Fig. 2),
shown in Tables I (a) and I (b) respectively.

• She considers that the terrorist threat may
come from two different kinds of Attackers:
Class I with probability 0.8 and Class II with
0.2. She also presumes that terrorists will face
a decision problem as described in Fig. 3.
The Defender assesses that the utilities and
probabilities of a Class I Attacker in (3) are
(UAI

, PAI
) ∼ FI , see Tables I (c) and I

(d), and those of a Class II Attacker are
(UAII

, PAII
) ∼ FII , see Tables I (e) and I (f).

• Based on the information available, the De-
fender thinks that a Class I Attacker is capable
of analyzing her problem as in Fig. 2. She
estimates that a Class I Attacker’s beliefs
about her utilities and probabilities in (4)
are (UDI

, PDI
) ∼ GI , shown in Tables I

(g) and I (h). The Defender’s confidence in
these assessments leads her to elicit ΠAI

(DI =
d1) as a beta distribution with mean πAI

(DI =

d1) and precision 10, that is, ΠAI
(DI = d1) ∼

Be(α, 10 − α), where α = πAI
(DI = d1) × 10.

The Defender has no information to assess
how a Class II Attacker would analyze her
problem. However, she believes that this
attacker estimates that she is more likely to
choose d1, specifically, that ΠAII

(DII = d1) ∼
Be(75, 25).

• Finally, she assigns a noninformative uncondi-
tional distribution on what a Class I Attacker
thinks to be her beliefs over his choice of
action: ΠDI

(A1
I = a1) ∼ U(0, 1).

To solve the Defender’s decision problem, we
need to assess πD(A = a1), her predictive distribu-
tion about what the terrorists will do, where A is the
mixture 0.8AI + 0.2AII , with AI representing the
Defender’s beliefs about what attack in A = {a1, a2}
a Class I terrorist will choose, and similarly for AII .
Thus,

πD(A = a1) = 0.8 πD(AI = a1) + 0.2 πD(AII = a1).

Based on (3) and (4), πD(AI = a1) could
be estimated through Monte Carlo simulation as
follows:
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1. For j = 1, . . . , n, repeat

Draw πj
DI

∼ ΠDI
= U(0, 1).

Draw (uj
DI
, pj

DI
) ∼ (UDI

, PDI
) = GI

Compute

dj
I = arg max

d∈D

X

a∈A

2

4

X

s∈{0,1}

uj
DI

(d, s)

pj
DI

(S = s | d, a)

3

5πj
DI

(A1
I = a)

2. Approximate πAI
(DI = d1) through

π̂AI
(DI = d1) = #{1 ≤ j ≤ n : dj

I = d1}/n
Set α = π̂AI

(DI = d1) × 10
Set Π̂AI

(DI = d1) ∼ Be(α, 10 − α)

3. For j = 1, . . . , n, repeat

Draw π̂j
AI

∼ Π̂AI

Draw (uj
AI
, pj

AI
) ∼ (UAI

, PAI
) = FI

Compute

aj
I = arg max

a∈A

X

d∈D

2

4

X

s∈{0,1}

uj
AI

(a, s)

pj
AI

(S = s | d, a)

3

5 π̂j
AI

(DI = d)

4. Approximate πD(AI = a1) through

π̂D(AI = a1) = #{1 ≤ j ≤ n : aj
I = a1}/n.

Similarly, πD(AII = a1) can be estimated by Monte
Carlo simulation as follows.

1. For j = 1, . . . , n, repeat

Draw πj
AII

∼ ΠAII
= Be(75, 25).

Draw (uj
AII

, pj
AII

) ∼ (UAII
, PAII

) = FII

Compute

aj
II = arg max

a∈A

X

d∈D

2

4

X

s∈{0,1}

uj
AII

(a, s)

pj
AII

(S = s | d, a)

3

5πj
AII

(DII = d)

2. Approximate πD(AII = a1) through

π̂D(AII = a1) = #{1 ≤ j ≤ n : aj
II = a1}/n.

In a run with n = 10, 000, we got the approximations
π̂D(AI = a1) = 0.84 and π̂D(AII = a1) = 0.39.
Hence, πD(A = a1) can be approximated by π̂D(A =
a1) = 0.8 π̂D(AI = a1) + 0.2 π̂D(AII = a1) = 0.75.
The Defender can now solve her decision problem
in (1), obtaining that her maximum expected utility
defense is d∗ = d1 with (Monte Carlo estimated)
expected utility 74.0, against d2 whose expected
utility is 45.9. △

(a) Influence diagram

(b) Game tree

Fig. 4. The Defend-Attack-Defend model

3. SEQUENTIAL

DEFEND-ATTACK-DEFEND MODELS

We deal now with the sequential defend-attack-
defend model, see Brown et al. (18) or Parnell et
al. (27) for various examples. In it, the Defender
first deploys defensive resources. Then, the Attacker,
having observed such decision, performs an attack.
Finally, the Defender tries to recover from the attack
as best as she can. Fig. 4 shows coupled influence
diagrams, with a shared uncertainty node S, and a
game tree representing this model. Nodes D1 and
D2 correspond to the Defender’s first and second
decisions, respectively, and node A represents the
Attacker’s decision. The respective choices will be
d1 ∈ D1, a ∈ A and d2 ∈ D2, which we shall
assume continuous. Again, we shall assume that the
only relevant uncertainty is the success level S of the
attack, which depends probabilistically on (d1, a) ∈
D1 × A. We shall assume that the consequences
for the Defender and the Attacker will depend,
respectively, on (d1, s, d2), the effort in implementing
her protective and recovery actions and the mitigated
result of the attack, and on (a, s, d2), the effort in
implementing his attack and the result of the attack,
mitigated by the recovery action of the Defender.

3.1 A Game Theoretic Analysis

A game-theoretic approach requires the De-
fender to know the Attacker’s utilities and proba-
bilities, the Attacker to know the Defender’s, and,
furthermore, that all this is common knowledge.
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Let these utility functions be uD(d1, s, d2) and
uA(a, s, d2), respectively, and their probability as-
sessments about the success of attack be pD(S = s |
d1, a) and pA(S = s | d1, a). Then, we may compute
a solution using backward induction as follows.

At node D2 of the game tree in Fig. 4, the
Defender’s best response after each observed (d1, s) ∈
D1 × S is

d∗2(d1, s) = arg max
d2∈D2

uD(d1, s, d2). (5)

Under the common knowledge assumption, the
Defender’s behavior at D2 can be anticipated by the
Attacker. Thus, at node S, the Defender’s expected
utility associated with each (d1, a) ∈ D1 ×A,

ψD(d1, a) =

∫

uD(d1, s, d
∗
2(d1, s)) pD(S = s | d1, a) ds,

(6)
and the Attacker’s,

ψA(d1, a) =

∫

uA(a, s, d∗2(d1, s)) pA(S = s | d1, a) ds,

are known to both of them. Then, the Attacker can
find his optimal attack decision at node A, after
observing the Defender’s first move d1 ∈ D1, by
solving

a∗(d1) = argmax
a∈A

ψA(d1, a).

Knowing this, the Defender can find her maximum
expected utility decision at node D1 through

d∗1 = arg max
d1∈D1

ψD(d1, a
∗(d1)).

Therefore, under common knowledge, game
theory predicts that the Defender will choose d∗1 ∈
D1 at node D1; then, the Attacker will respond by
choosing attack a∗(d∗1) ∈ A at node A; and, finally,
the Defender, after observing s ∈ S, will choose
d∗2(d

∗
1, s) ∈ D2 at node D2.

3.2 The ARA Approach

We now give up the strong common knowl-
edge assumption and provide an ARA analysis
to support the Defender. For this, we treat the
Attacker’s decision at node A as uncertain from the
Defender’s viewpoint and model such uncertainty.
This is reflected in the influence diagram and the
decision tree in Fig. 5, where the Attacker’s decision
node has been converted into a chance node, by

replacing A with A . The Defender needs to
assess pD(A|d1), her predictive distribution about

(a) Influence diagram

(b) Decision tree

Fig. 5. The Defender’s decision problem

what attack the Attacker will choose at node A
against each d1 ∈ D1, besides the (more standard)
assessments uD(d1, s, d2) and pD(S | d1, a).

Given these, the Defender can solve her decision
problem working backwards the tree in Fig. 5. At
node D2, she can compute her maximum utility
action d∗2(d1, s) for each (d1, s) ∈ D1 × S, as in
(5). Afterwards, she will obtain at node S her
expected utility ψD(d1, a) for each (d1, a) ∈ D1 ×
A, as in (6). At this point, she will use her
probabilistic assessment about what the Attacker
will do, pD(A|d1), to compute her expected utility
at node A for each d1 ∈ D1,

ψD(d1) =

∫

ψD(d1, a) pD(A = a | d1) da.

Finally, she can find her maximum expected utility
decision at node D1

d∗1 = arg max
d1∈D1

ψD(d1).

Based on this approach, the Defender’s best strategy
is to choose first d∗1 at node D1, and later, after
observing s ∈ S, choose d∗2(d

∗
1, s) at node D2.

Let us discuss now the assessment of pD(A | d1).
Alternatively to the standard risk analysis approach
as in Ezell et al. (3), we propose in ARA to model the
Defender’s uncertainty about the Attacker’s decision
assuming he is an expected utility maximizer and
taking into account that the Defender’s uncertainty
stems from her uncertainty about the Attacker’s
probabilities and utilities associated with his decision
problem. The analysis of the Attacker’s decision
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(a) Influence diagram

(b) Decision tree

Fig. 6. The Defender’s view of the Attacker’s decision
problem

problem, as seen by the Defender, is shown in
Fig. 6, where the Attacker’s probabilities and utilities
need to be assessed from the Defender’s perspective,
based on all the information available to her. Again,
should this kind of information not be available
to the Defender, she could use a noninformative
distribution to describe pD(A | d1).

Therefore, to elicit pD(A | d1), the Defender
needs to assess uA(a, s, d2) and pA(S | d1, a), as well
as pA(D2 | d1, a, s). In general, she will not know
these quantities, but she may acknowledge her uncer-
tainty about them through a probability distribution
F = (UA(a, s, d2), PA(S | d1, a), PA(D2 | d1, a, s))
and solve the perceived Attacker’s decision problem
using backward induction over the decision tree in
Fig. 6 as follows, propagating the uncertainty in F
to get the random variable A∗(d1) for each d1:

• At chance node D2, compute

(d1, a, s) → ΨA(d1, a, s) =
∫

UA(a, s, d2) PA(D2 = d2 | d1, a, s) dd2.

• At chance node S, compute

(d1, a) → ΨA(d1, a) =
∫

ΨA(d1, a, s) PA(S = s | d1, a) ds.

• At decision node A, compute

d1 → A∗(d1) = arg max
a∈A

ΨA(d1, a).

Then, the Defender’s predictive density pD(A | d1)
over attacks, conditional on her first defense decision
d1, is given by

∫ a

0

pD(A = x | d1)dx = Pr(A∗(d1) ≤ a).

This distribution could be approximated by Monte
Carlo as follows

1. For i = 1, ..., n, repeat

Draw
`

ui
A(a, s, d2), p

i
A(S | d1, a), p

i
A(D2 | d1, a, s)

´

∼ F

At chance node D2, compute

(d1, a, s) → ψi
A(d1, a, s) =

Z

ui
A(a, s, d2) p

i
A(D2 = d2 | d1, a, s) dd2

At chance node S, compute

(d1, a) → ψi
A(d1, a) =

Z

ψi
A(d1, a, s) p

i
A(S = s | d1, a) ds

At decision node A, compute

d1 → a∗i (d1) = arg max
a∈A

ψi
A(d1, a)

2. For any a, approximate
R a

0
pD(A = x | d1)dx

through #{1 ≤ i ≤ n : a∗i (d1) ≤ a}/n.

We have seen how the assessment of pD(A|d1)
is straightforward after the Defender’s elicitation
of F . However, the assessment of PA(D2|d1, a, s)
within F could be problematic, as the Defender may
want to exploit information available to her about
how the Attacker analyzes her decision problem. Of
course, if there is no information that the Defender
can use, she will put a noninformative distribution
over PA(D2|d1, a, s). The Defender may continue this
recursive analysis, until eventually she has no more
information to analyze the next level of the hierarchy
of recursive decision models, much as described in
§2.2. The recursive analysis will always stop at some
point, perhaps after some simplifications leading to
an heuristic distribution to model an adversary’s
thinking at some step of the recursive analysis, as
illustrated in Rios Insua et al.(35) for an auction
problem.

An illustration of the ARA approach to this
model can be found in Sevillano et al.(39), where a
sequential defend-attack-defend model is used by a
ship owner to manage risks from piracy acts around
the coast of Somalia when sailing through the Gulf
of Aden.
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4. SEQUENTIAL DEFEND-ATTACK

MODELS WITH PRIVATE

INFORMATION

Our final basic model will be the sequential
Defend-Attack model with Defender’s private infor-
mation, i.e. information that she does not want the
Attacker to know. This is the case when e.g. the
Defender wants to keep secrecy about vulnerabilities
of sites she is trying to protect, as this information
can be used by the Attacker to increase the chances of
success and the expected impact of an attack. In this
model, the Defender moves first by choosing a defense
and, then, having observed it, the Attacker moves by
choosing an attack. Note that the Defender’s decision
allocating resources to protect different sites might
signal to the Attacker about the sites’ vulnerability
and importance for the Defender, which is the type
of information she wants to keep secret. This kind of
applications, with the corresponding game theoretic
analysis, has been considered e.g. by Powell (15),
Zhuang et al. (40), and Zhuang and Bier (41,42).

Assume that the Defender and the Attacker
have, respectively, sets D and A of possible defenses
and attacks. We shall also assume that the success
level S of an attack is uncertain. The private
information (e.g., vulnerabilities) is represented by
V , whose value is known by the Defender, but not
by the Attacker. This affects the chances of success
of an attack, as well as its impact. Finally, for both
adversaries, the consequences depend, in addition, on
the success of this attack and their own action.

Fig. 7 depicts the problem graphically. The
coupled influence diagrams show explicitly that the
uncertainty associated with the success of an attack
S is probabilistically dependent on the actions of
both the Attacker and the Defender, as well as on
v. For example, if v represents a site’s vulnerability,
this probability will be higher as vulnerability gets
higher, the rest of factors staying the same. The util-
ity functions over the consequences for the Defender
and the Attacker are, respectively, uD(d, s, v) and
uA(a, s, v), reflecting that the consequences depend
also on V = v. The arc in the influence diagram
from the Defender’s decision node to the Attacker’s
reflects that the Defender’s choice is observed by the

Attacker. The arc from V to D reflects that v is
known by the Defender at the time she makes her

decision. The lack of arc from V to A indicates
that v is not known by the Attacker at the time he
makes his decision.

We also show the corresponding game tree. To

(a) Influence diagram

(b) Game tree

Fig. 7. The sequential Defend-Attack model with Defender’s
private information

simplify the figure, we only show two actions per
adversary: D = {d1, d2} and A = {a1, a2}; two
possible outcomes (failure or success) of an attack:
S ∈ {N,Y }; and two possible values for V ∈ {v1, v2}.
The game tree reflects the sequential nature of the
problem, as well as the asymmetric information. The
fact that the Attacker does not know what is the
value v at the time he must move is displayed using
information sets (drawn as dashed lines), a standard
element of games with imperfect information (43).

4.1 A Game Theoretic Analysis

We briefly describe how standard game theory
solves this model with private and asymmetric
information. This is an example of a signaling
game (44,45). The game-theoretic approach requires
the probability assessment of S, conditional on
(d, a, v). As the Defender and the Attacker may have
different assessments, these will be represented by
pD(S|d, a, v) and pA(S|d, a, v). The Attacker’s prior
beliefs about the Defender’s private information V
are represented through the probability distribution
πA(v). All these probabilities, and the utilities
uD(d, s, v) and uA(a, s, v), are common knowledge.
A solution proceeds, then, as follows.

First, we define strategy functions for each
player. As the Defender knows the value of V , her
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strategy function is of the form v → d(v) ∈ D. As the
Attacker makes his decision knowing the Defender’s,
his strategy function is of the form d → a(d) ∈ A.
We compute the expected utilities of both players at
node S of the tree in Fig. 7, for any pair of decisions
(d, a) ∈ D × A and value of private information
V = v:

ψD(d, a, v) =

∫

uD(d, s, v) pD(S = s | d, a, v) ds (7)

ψA(d, a, v) =

∫

uA(a, s, v) pA(S = s | d, a, v) ds (8)

The Attacker’s best response against a defense d is

a∗(d) = argmax
a∈A

∫

ψA(d, a, v) πA(V = v | d) dv,

(9)
where πA(V |d) represents the Attacker’s updated
beliefs about the Defender’s private information,
after having observed her defense action. We show
how to determine πA(V |d) below. For now, we shall
assume it is known. Under the assumption that
the Defender knows how the Attacker will solve his
decision problem for any d ∈ D, the Defender’s
maximum expected utility decision, given that she
knows the value of V = v, would be

d∗(v) = arg max
d∈D

ψD(d, a∗(d), v).

As commonly accepted in game theory, we allow
for randomized strategies. Assuming that D and A
are continuous, we define

ΠD =

{

π : π(d) ≥ 0 ∀d ∈ D and

∫

D

π(d)dd = 1

}

and

ΠA =

{

π : π(a) ≥ 0 ∀a ∈ A and

∫

A

π(a)da = 1

}

as their associated sets of randomized strategies.
Hence, d∗(v) and a∗(d) have associated probability
distributions πd∗(v)(d | v) ∈ ΠD and πa∗(d)(a | d) ∈
ΠA, respectively.

We now show how the probability distribution
πd∗(v)(d | v) is related with πA(V = v | d). Under
the assumption that the Attacker knows how the
Defender will solve her problem for any v ∈ V , he can
update his prior knowledge about V after observing
a defense d, through Bayes’ rule:

πA(V = v | d) ∝ πA(V = v) πd∗(v)(D = d | v),

which is the probability distribution needed to
compute (9).

A game theoretic solution can be determined,

(a) Influence diagram

(b) Decision tree

Fig. 8. The Defender’s decision problem

then, by finding a pair of strategies
(

πd∗(v), πa∗(d)

)

which are a fixed point solution of the equations

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πd∗(v) = arg max
π∈ΠD

∫

D

[
∫

A

ψD(d, a, v)

πa∗(d)(a | d) da

]

π(d) dd, ∀v ∈ V

πa∗(d) = arg max
π∈ΠA

∫

A

[
∫

V

ψA(d, a, v)

πA(v) πd∗(v)(d | v) dv

]

π(a) da, ∀d ∈ D

(10)
Note that a fixed point solution of the equations
in (10) is a Nash equilibrium. In addition, we
have assumed that the Attacker’s learning behavior
follows Bayes’ rule.

4.2 The ARA Approach

For a more realistic approach, we weaken the
common knowledge assumption. We consider the
Defender’s decision problem as a standard decision
analysis problem, illustrated in Fig. 8, with the
Attacker’s decision node perceived now as a random
variable. Similarly, her decision tree shows uncer-

tainty about the Attacker’s decision by replacing A
with A .

Assume, the Defender has already assessed
pD(S|d, a, v) and uD(d, s, v). She also needs pD(A|d),
which is her assessment of the probability that the
Attacker will choose attack A = a, after observing
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(a) Influence diagram

(b) Decision tree

Fig. 9. The Defender’s analysis of the Attacker’s decision

that she has chosen defense d. Obtaining this will
require that the Defender analyzes the problem from
the Attacker’s perspective. Assume for a moment
that she has assessed pD(A|d). Then, the Defender
can obtain her maximum expected utility defense by
solving the tree in Fig. 8 using backwards induction
as follows:

• At chance node S, compute ψD(d, a, v) for
each (d, a, v) as in (7).

• At chance node A, compute

(d, v) → ψD(d, v) =
∫

ψD(d, a, v) pD(A = a | d) da

• At decision node D, solve

v → d∗(v) = argmax
d∈D

ψD(d, v).

To assess pD(A|d), the Defender must place
herself on the Attacker’s shoes and solve his decision
problem from her perspective. Fig. 9 represents the
Attacker’s decision problem, as seen by the Defender.
Note that the Defender’s decision is represented
as a random variable in the Attacker’s analysis,
as it is not under his control. The arrow from
D to A in the influence diagram indicates that
the Defender’s decision will be known to him at
the time he has to decide. As the Attacker does
not know the Defender’s private information v, his
uncertainty is represented through a probability
distribution pA(V ), describing the Attacker’s (prior)
beliefs about the Defender’s private information. We
assume that the Defender analyzes the Attacker’s

decision considering that he is an expected utility
maximizer and that he uses Bayes rule to learn
about the Defender’s private information from the
observation of her defense decision. Thus, the arrow
in the influence diagram from V to D , which
represents probabilistic dependence, can be inverted
to obtain the Attacker’s (posterior) beliefs about v:
pA(V |D = d). However, to obtain this we need to
assess pA(D|v) first.

Should the Defender know the Attacker’s utility
function uA(a, s, v) and his probabilities pA(S|d, a, v)
and pA(V |d), she would be able to anticipate his
decision a∗(d) for any d ∈ D by solving backwards
the tree in Fig. 9 and computing his expected utility
ψA as follows:

• At chance node S, compute ψA(d, a, v) for each
(d, a, v) as in (8).

• At chance node V , compute for each (d, a)

ψA(d, a) =

∫

ψA(d, a, v) pA(V = v | d) dv.

(11)

• At decision node A, solve

d→ a∗(d) = arg max
a∈A

ψA(d, a).

However, the Defender does not know (pA, uA),
but she has beliefs about them, say (PA, UA) ∼
F , which will be relevant in her analysis of the
Attacker’s decision problem. This distribution will
induce distributions ΨA(d, a, v) and ΨA(d, a) on the
Attacker’s expected utilities defined in (8) and (11),
through, respectively,

ΨA(d, a, v) =

∫

UA(a, s, v) PA(S = s | d, a, v) ds

and

ΨA(d, a) =

∫

ΨA(d, a, v) PA(V = v | d) dv

for (PA, UA) ∼ F . Then, the Defender’s predictive
distribution about the Attacker’s response to any of
her defense choices d is defined through

pD(A = a|d) = IPF

[

a = arg max
x∈A

ΨA(d, x)
]

, ∀a ∈ A.

The Defender may use Monte Carlo simulation
to approximate pD(A|d) by drawing n samples
{(

pi
A, u

i
A

)}n

i=1
from F , which produce {ψi

A}
n
i=1 ∼

ΨA, and approximating pD(A = a|d) through

p̂D(A = a|d) = #{1 ≤ i ≤ n : a∗i (d) = a}/n, ∀a ∈ A,

when A | d is discrete, or

p̂D(A ≤ a|d) = #{1 ≤ i ≤ n : a∗i (d) ≤ a}/n, ∀a ∈ A,
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when A | d is absolutely continuous.
To sum up, the elicitation of F =

(PA(S|d, a, v), PA(V |d), UA(a, s, v)) allows the
Defender to solve her problem of assessing pD(A|d).
The Defender may have enough information and
judgment available to directly assess PA(S|d, a, v)
and UA(a, s, v). However, the assessment of PA(V |d)
requires a deeper analysis, as it has a strategic
component.

Specifically, assuming that the Attacker has
prior knowledge over V modeled through pA(V ), his
posterior beliefs about V , after he observes D = d,
become:

pA(V = v|d) ∝ pA(V = v) pA(D = d|v), (12)

where pA(D = d|v) models the Attacker’s proba-
bilistic assessment of what defense she would choose
conditional on each possible value of her private
information. The elicitation of pA(D|v) requires an
analysis of how the Attacker analyzes the Defender’s
decision. Assuming he thinks that she is an expected
utility maximizer, and that the decision problem she
tries to solve is as in Fig. 8, with A1 representing
the Attacker’s decision within this level of recursive
modeling, the Defender’s elicitation of a probabil-
ity distribution G = ( UD(d, s, v), PD(S|d, a, v),
PD(A1|d) ) representing the Attacker’s probabilistic
assessments of her utilities and probabilities, allows
her to solve her problem of assessing pA(D|v) by
evaluating a tree like the one in Fig. 8 as follows:

• At chance node S, compute for each (d, a, v)

ΨD(d, a, v) =
∫

UD(d, s, v) PD(S = s | d, a, v) ds.

• At chance node A1, compute for each (d, v)

(d, v) → ΨD(d, v) =
∫

ΨD(d, a, v) PD(A1 = a | d) da.

• At decision node D, solve for each v

v → pA(D = d|v) =

IPG

[

d = argmax
x∈D

ΨD(x, v)
]

, ∀d ∈ D. (13)

As the Attacker’s beliefs represented within G
are assessed from the Defender’s perspective, her
uncertainty about these beliefs when acknowledged
within G will produce the distribution PA(D|v) in
(13), representing what the Defender beliefs to be
pA(D|v). Note also that pA(V ) in (12) represents

the Attacker’s prior knowledge about the Defender’s
private information. As the Defender does not
have access to this distribution, we will directly
elicit it from the Defender’s perspective: PA(V )
represents what she believes to be pA(V ), with the
probabilistic model PA acknowledging her confidence
on her assessment of pA. Then, from the Defender’s
perspective, the Attacker’s learning about V modeled
in (12) becomes

PA(V = v|d) ∝ PA(V = v) PA(D = d|v). (14)

The only difficulty for the Defender at this step,
in order to obtain PA(D|v), is her assessment of
what she thinks to be the Attacker’s assessment
of the probability model used by her to predict
his attack as a response to her chosen defense:
PD(A1|d) in G. We may go further in the hierarchy
of nested decision models and try to support the
Defender in the assessment of PD(A1|d) through the
analysis of how the Attacker, in his analysis of her
decision problem, thinks the Defender will analyze
his decision problem, similarly as described in §2.2.
However, if no information is available at this level,
we can end the hierarchy of analysis with a reference
distribution over PD(A1|d). This would allow the
computation of a recommendation for action to the
Defender. Clearly, should this recommendation be
sensitive to the reference distribution, this would
indicate that there is still relevant information that
needs to be elicited before reaching a robust enough
recommendation. In such case, it would be desirable
to collect more data and/or judgement through
intelligence.

We illustrate the ARA approach to the sequen-
tial Defend-Attack model with Defender’s private
information with a simple numerical example.

Example. Consider a Defender who needs to
protect two sites against a potential terrorist attack.
The Defender has a limited amount of defensive
resources distributed between both sites. The At-
tacker knows the total amount of defensive resources.
This is common knowledge as it was publicized by
the Defender. However, the actual distribution of
defensive resources between both sites (v1 for Site
1, v2 for Site 2 for each unit of defensive resources,
v1 + v2 = 1) is only known by the Defender.

The Attacker has the capacity of launching an
attack against either one of the two sites, but not
both, and he has announced that he will attack one
of the sites with all his available resources. Therefore,
the available actions for the Attacker are a ∈ A =
{a1, a2} with ai representing attacking Site i, i =
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1, 2. The Defender has the option of re-distributing
her allocation of defensive resources by moving d of
them from one site to another. This move will be
observed by the Attacker before deciding which site
to attack. The set of alternatives for the Defender
is then D(v1) = {d : v1 − 1 ≤ d ≤ v1}, where, for
example, d = 0.5 means that she will move half of
her total defensive resources from Site 1 to Site 2,
and d = −0.5 that half of her defensive resources
will be moved from Site 2 to Site 1. If v1 ∈ [0, 1] is
the initial distribution of defensive resources between
sites, the distribution after her move d will be: v1−d
for Site 1 and v2 + d for Site 2.

The probability that an attacked site is destroyed
(successful attack) depends on the amount of
resources committed to that site by the Defender.
The more defensive resources allocated to the site,
the lower the probability that the attack will
be successful. Specifically, they both share the
(commonly known) beliefs that

p(S1 = 1|d, a, v) =

{

1 − (v1 − d), if a = a1

0, if a = a2

(15)

p(S2 = 1|d, a, v) =

{

0, if a = a1

1 − (v2 + d), if a = a2

(16)

Note that as deploying more defensive resources at
a site reduces the probability that an attack on that
site will be successful, v = (v1, v2) can be interpreted
as a measure of the sites’ vulnerability before the
Defender’s move: the lower the amount of initial
defensive resources allocated to a site, the higher the
success probability of an attack on the site, and the
higher the need for the Defender to move resources to
that site in order to reduce that risk. The Defender
keeps the information about the sites’ vulnerability
v as a secret, and, thus, the Attacker does not know
v. However, the Defender thinks the Attacker is
capable of learning about her private information v
by observing her move d using Bayes’ rule as in (12).

The Attacker’s and Defender’s objectives are
commonly known to be maximizing the probability
of succeeding in his attack (for the Attacker), and
minimizing this probability (for the Defender). Thus,
the utilities for the Defender and the Attacker
associated with each outcome are known to be,
respectively,

uD(s1, s2) =

{

1, iff S1 = 0 and S2 = 0

0, otherwise
(17)

Fig. 10. A sequential Defend-Attack resource allocation
problem between two sites with Defender’s private information
about the sites’ vulnerabilities

uA(s1, s2) =

{

1, iff S1 = 1 or S2 = 1

0, otherwise
(18)

Fig. 10 shows coupled influence diagrams repre-
senting this decision situation. Node Si represents
the uncertainty associated with the success of an
attack carried out against Site i, with i = 1, 2. These
uncertainties depend on the actions taken by both
the Attacker and the Defender, as well as on the
initial distribution v of defensive resources secretly
allocated by the Defender between both sites.

To simplify, we have assumed that the Defender’s
and the Attacker’s preferences for the different
outcomes are commonly known to be described
respectively by (17) and (18), and that both the
Defender and the Attacker share the same commonly
known beliefs about S1 | d, a, v and S2 | d, a, v,
described by (15) and (16) respectively. If v were also
common knowledge, then the optimal decision for the
Defender would be d = (v1 − v2)/2, thus leaving the
same amount of defensive resources in each of both
sites after her re-distributing move, with the Attacker
indifferent between striking any of the sites.

When v is privately known by the Defender only,
the game-theoretic approach based on Bayes-Nash
equilibrium assumes that the Attacker’s beliefs over
v are common knowledge. We deem unrealistic this
assumption that the Attacker will reveal his beliefs
about v, and solve the problem for the Defender
weakening it. Fig. 11 shows the influence diagram
and the decision tree representing the Defender’s
decision problem, in which the Attacker’s decision
is perceived by her as an uncertainty and the value
of v is observed by her before making her decision.
The analysis of her uncertainty about the Attacker’s
decision requires that she thinks about the decision
problem faced by the Attacker, which is shown in
Fig. 12, where now her decision is modeled as an
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(a) Influence diagram

(b) Decision tree

Fig. 11. The Defender’s resource re-allocation decision
problem

uncertainty from the Attacker’s perspective, and the
value of v is unknown to him at the time he makes
his decision.

Assume that we are able to obtain from the
Defender the following assessments:

• v = (v1 = 0.5, v2 = 1 − v1 = 0.5): The initial
allocation of defensive resources between both
sites.

• V = (V1, V2 = 1 − V1): The Attacker’s assess-
ment of the Defender’s private information, as
elicited by the Defender. The Defender knows
v, but the Attacker does not. The Attacker’s
(prior) beliefs over the possible values of V1 =
v1 ∈ [0, 1] will be represented by pA(V1) and
will be elicited from the Defender’s perspective
through PA(V1). Based on the information
available to her, she believes that pA(V1) is
a beta distribution Be(α, β) with mean µ =
α/(α + β) and precision ν = α + β within
the ranges µ ∈ [0.5, 0.8] and ν ∈ [10, 30],
respectively. Based on this, we model PA(V1)
as a hierarchical beta distribution Be(µ ν, (1−
µ) ν) with µ ∼ U(0.5, 0.8) and ν ∼ U(10, 30).

• A heuristic for assessing pD(A1|d), the De-
fender’s beliefs about which site the Attacker
will attack after observing her move, within

(a) Influence diagram

(b) Decision tree

Fig. 12. The Defender’s analysis of the Attacker’s decision
on what site to attack

the model used by the Defender to represent
how the Attacker thinks she will solve her
decision problem. To solve the Defender’s
problem from the Attacker’s perspective, he
would need to assess pD(A1|d). The heuristic
model for the Attacker’s choice at this level of
analysis assumes that the Attacker will choose
the site with less defensive resources and that
he will not revise his estimate v̂ of v after
observing her move d. Specifically,

A1 = a1, if v̂1 − d < 0.5,

A1 = a2, if v̂1 − d > 0.5,

where v̂1 represents the Attacker’s estimate of
v1, the initial defensive resources in Site 1.
Thus, the Defender ends the hierarchy of
recursive decision analysis at this point,
disregarding the modeling of further and more
complex levels of analysis.

• V̂ = (V̂1, V̂2 = 1 − V̂1): The Defender’s beliefs
of the Attacker’s estimate v̂ of her private
information v, as would be assessed by the
Attacker. The heuristic above has reduced the
assessment of pD(A1|d) to the assessment of
V̂ . We use a a triangular distribution on [0, 1]
with mode φ to model the Defender’s beliefs
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about v̂1. Thus, V̂1|φ ∼ Tri(min = 0, mode =
φ, max = 1). The Defender also thinks that
the Attacker believes that she overestimates
what he thinks to be v1. Specifically, φ |
θ, σ ∼ N (V1 + θ, σ) truncated on [0, 1], with
the Defender assessing that θ ∼ U(0.1, 0.2)
and σ ∼ U(0.1, 0.3).

We find a solution to the Defender’s decision
problem as follows.

1. Compute the Defender’s beliefs over A1 based on
the proposed heuristic:

pD(A1 = a1|d) = Pr(V̂1 − d < 0.5|φ),

where V̂1|φ ∼ Tri(0, mode = φ, 1). Thus, given φ,

pD(A1 = a1|d) = (19)

=



















0, 0.5 + d ≤ 0

(0.5 + d)2/φ, 0 ≤ 0.5 + d ≤ φ

1 − (0.5 − d)2/(1 − φ), φ ≤ 0.5 + d ≤ 1

1, 1 ≤ 0.5 + d

2. Given pD(A1|d), the Defender can solve her
decision problem by working backwards the tree in
Fig. 11 as follows:

• At chance nodes S1 and S2, compute for

each (v, d, a),

ψD(v, d, a) =
X

s1∈{0,1}

X

s2∈{0,1}

h

uD(s1, s2)

p(S1 = s1, S2 = s2 | d, a, v)
i

= p(S1 = 0 | d, a, v) p(S2 = 0 | d, a, v)

=

(

v1 − d, a = a1

v2 + d, a = a2

• At chance node A1
, compute for each (v, d),

ψD(v, d) = ψD(v, d, a1) pD(A1 = a1|d) +

ψD(v, d, a2) (1 − pD(A1 = a1|d))

Thus, ψD(v, d) is

v2 + d,

if d ≤ −0.5,

(v1 − d) (0.5 + d)2/φ +

(v2 + d) (1 − (0.5 + d)2/φ),

if −0.5 ≤ d ≤ −0.5 + φ,

(v1 − d) (1 − (0.5 − d)2/(1 − φ)) +

(v2 + d) (0.5 − d)2/(1 − φ),

if −0.5 + φ ≤ d ≤ 0.5,

v1 − d,

if 0.5 ≤ d.

• At decision node D, solve for each v,

d∗(v) = arg max
d∈[v1−1,v1]

ψD(v, d)

Thus, for each v1 ∈ [0, 1], the optimal deci-

sion for the Defender, d∗(v1), is

−
1

2
+

2 v1 +
p

4 v2
1 + 6φ

6
, (20)

if v1 ≤ (6φ− 1)/4, and

1

2
+

2 (v1 − 1) −
p

4 (v1 − 1)2 + 6 (1 − φ)

6
, (21)

if v1 ≥ (6φ− 1)/4.

From the perspective of the Attacker, pD(A1|d) is
not known since he does not have access to the
value of φ used by the Defender in (19). Should the
Attacker know φ, he would be able to anticipate the
Defender’s optimal move, d∗(v), for each possible
initial allocation v. At this level of the recursive
analysis, the Attacker’ beliefs about φ are propagated
to define pA(D|v1) from d∗(v1) in (20)–(21), when
φ | v1, θ, σ ∼ N (v1 + θ, σ) truncated on [0, 1].

3. Given pA(D|v) and pA(V ), the Attacker can learn
about V from his observation of D = d by computing
pA(V |d) using (12), and solve his decision problem by
working backwards the tree in Fig. 12 as follows:

• At chance nodes S1 and S2, compute for

each (d, a, v),

ψA(d, a, v) =
X

s1∈{0,1}

X

s2∈{0,1}

h

uA(s1, s2)

p(S1 = s1, S2 = s2 | d, a, v)
i

= 1 − p(S1 = 0 | d, a, v) p(S2 = 0 | d, a, v)

=

(

p(S1 = 1 | d, a1, v), a = a1

p(S2 = 1 | d, a2, v), a = a2

• At chance node V , compute for each (d, a),

ψA(d, a) =

Z

ψA(d, a, v) pA(V = v | d) dv

• At decision node A, solve for each d,

a∗(d) = arg max
a∈{a1,a2}

ψA(d, a),

obtaining that, for each d ∈ [−1, 1],

a∗(d) = a1, ψA(d, a1) > ψA(d, a2)

a∗(d) = a2, ψA(d, a1) < ψA(d, a2)

where

ψA(d, a1) > ψA(d, a2) ⇐⇒
Z

(1 − 2 v1 + 2 d) pA(V1 = v1|d) dv1 > 0 ⇐⇒

EpA
(V1 | d) − d < 1/2. (22)

Thus, the optimal decision for the
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Attacker is

a∗(d) = a1, if EpA
(V1 | d) − d < 1/2,

a∗(d) = a2, if EpA
(V1 | d) − d > 1/2.

The Attacker then chooses a1 (attack Site 1) when,
after observing d, he expects less defensive resources
in Site 1 than in Site 2, where the Attacker’s
expectation is computed with respect to his updated
beliefs about V : pA(V |d). Should the Defender
know pA(V |d), she would be able to anticipate
the Attacker’s choice by computing (22). However,
she does not know it as she is uncertain about
the Attacker’s probabilities pA(D|v) and pA(V ),
which are necessary to compute his pA(V |d). But
we can assess her beliefs PA(V ) = pA(V |µ, ν),
µ ∼ U(0.5, 0.8), ν ∼ U(10, 30), and PA(D|v) =
pA(D|v, θ, σ), θ ∼ U(0.1, 0.2), σ ∼ U(0.1, 0.3), to
obtain PA(V |d) as in (14), and, in turn, compute
her predictive probability of the Attacker’s decision

pD(A = a1|d) = IPµ,ν,θ,σ[EpA
(V1 | d) − d < 1/2].

4. We use Monte Carlo simulation to estimate
pD(A = a1|d)

For k = 1, . . . , nk

Simulate pk(V1) ∼ PA(V1)

µk ∼ U(0.5, 0.8)

νk ∼ U(10, 30)

Set pk(V1) = Be(µk νk, (1 − µk) νk)
Simulate pk(D|v1) ∼ PA(D|v1)
θk ∼ U(0.1, 0.2)

σk ∼ U(0.1, 0.3)

Set φk|v1 = N (v1 + θk, σk) truncated on [0, 1]
Thus, pk(D|v1) = IPφk|v1

(D = d∗(v1))

Simulate (vi
1, d

i) from pk(V1,D) ∼ PA(V1,D)
For i = 1, . . . , ni

vi
1 ∼ pk(V1)
φi

k ∼ φk|V1 = vi
1

di = d∗(vi
1), with φ = φi

k in (20)-(21)

Thus, di ∼ pk(D|V1 = vi
1)

For every −1 ≤ d ≤ 1

{ vd
j = vi

1 : (vi
1, d

i = d) }nd

j=1 ∼ pk(V1|d)

Approximate Epk(V1|d) by
Pnd

j=1 v
d
j /nd

Approximate pD(A = a1|d) by

#{1 ≤ k ≤ nk : Epk(V1|d) − d < 1/2}/nk.

5. Once pD(A|d) has been approximated, the
Defender can find her (Monte Carlo estimated) max-
imum expected utility decision d∗(v) by solving the
decision tree in Fig. 11 using backwards induction:

d∗ = arg max
d∈[−v2 , v1]

(v1 − d) pD(A = a1 | d) +

(v2 + d) pD(A = a2 | d),

with v = (v1 = 0.5, v2 = 0.5)

ψD(d), −0.5 ≤ d ≤ 0.5

pD(A|d), −0.5 ≤ d ≤ 0.5

Fig. 13. Defender’s expected utilities and predictive proba-
bilities of site strike

We used nk = ni = 5, 000 to run the Monte Carlo
simulation and obtained that the Defender’s optimal
move is d∗ = 0.15. Thus, given the assessments
from the Defender, her maximum expected utility
action is to re-allocate 15% of her defensive resources
by moving them from Site 1 to Site 2, decreasing
her resources in Site 1 from 50% (v1 = 0.5) to
35% (v1 − d∗) and increasing them in Site 2 from
50% (v2 = 0.5) to 65% (v2 + d∗). Fig. 13 shows
the Defender’s (Monte Carlo estimated) expected
utilities ψD(d) of her feasible moves −0.5 ≤ d ≤ 0.5
as well as her (Monte Carlo estimated) predictive
probabilities pD(A|d) of each site being attacked for
each of her feasible d. For d∗ = 0.15, we have that
pD(A = a1|d∗) = 0.06 and pD(A = a2|d∗) = 0.94.

We may see how the solution proposed by the
ARA approach is consistent with the Defender’s
beliefs on the Attacker overestimating her resources
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initially allocated to Site 1. The move of some
defensive resources from Site 1 to Site 2 will reinforce
the Attacker’s perceived beliefs. Thus, the Defender’s
expected utility increases by moving resources to
Site 2 until her predictive probability of an attack
to Site 1 starts increasing sharply, see Fig. 13. This
allows for the increase of the relative strength of
Site 2, the site that a priori is more likely to be
attacked, until more resources sent to Site 2 start
signalling that Site 1 will end up with less resources.
Sending too much defensive resources to Site 2
would allow the Attacker to change his beliefs about
which site has less resources and make the Defender
vulnerable to an attack on Site 1.

Finally, we also note that the Defender’s ex-
pected utility function has another local (but not
global) maximum which corresponds to d = −0.15.
This move would allow the Defender to increase
the relative strength of Site 1 while at the same
time making the Attacker believe that she had less
resources in that site. Thus, moving some defensive
resources from Site 2 to Site 1 would make the
Attacker revise down his (prior) beliefs on the initial
amount of defensive resources in Site 1, increasing
the Defender’s predictive probability of an attack to
Site 1 to a point in which for d = −0.15, pD(A =
a1|d = −0.15) = 0.59. At this point, the move of
more resources to Site 1 would decrease her perceived
likelihood of an attack to Site 1, making, in turn, her
expected utility to decrease again, see Fig. 13. △

5. DISCUSSION

We have provided an account of how the
ARA framework can support a Defender against
an intelligent adversary, the Attacker, whereby the
Defender assesses the probabilities of the adversaries’
actions before computing her maximum expected
utility defense. We have assumed that the Attacker
is an expected utility maximizer, and that the
Defender’s uncertainty about the Attacker’ decision
stems from her uncertainty about his decision
analysis, specifically his probabilities and utilities.
Instead of using point estimates for the Attacker’s
probabilities and utilities, which would lead to
a point estimate of his maximum expected util-
ity decision, we build a distribution over them,
acknowledging the uncertainty on the estimates.
Part of these uncertainties can be directly elicited
from the Defender, but other parts may require
strategic thinking as illustrated above. This leads to
a hierarchy of recursive decision analysis, in which

the Defender accommodates as much information
as she can, until she may not provide additional
information, step at which we use a noninformative
distribution to close the hierarchy of analysis.
A clear advantage of structuring the Attacker’s
problem is that the Defender can isolate different
uncertainty and value components of her problem
and accommodate different expertise, facilitating the
assessment of the adversary’s priorities and beliefs,
as noted in Merrick and Parnell(46).

We have used a subjective expected utility
model to predict the terrorist’s decision behavior.
One could question the hypothesis of the adversary
being rational, but the recent terrorist behaviour
literature supports such hypothesis (47,1), meaning
that terrorists tend to use their limited offensive
resources to cause significant damage where there
can be a high probability of success. Note that we
could assume other optimizing models to describe
terrorists’ decision behavior, but our arguments
could be easily translated without changing our
methodology.

We have focused on how the ARA framework
could be applied to basic counterterrorism models in
order to illustrate the key methodological steps of the
analytic framework. The models we have discussed
are relatively simple, but they retain the essence
of counterterrorism decision making. Real problems
are much more complex, with hundreds of possible
decisions, many more uncertainties including those
associated with the goals and resources of the
terrorists, and more complex dynamic interactions,
which would require more complex analysis. In those
cases, we would expect to deploy more complex
coupled influence diagrams for the Defender and the
Attacker, partitioned according to time and informa-
tion, possibly as in Koller and Milch(48), in sequences
of defend-attack-defend moves, simultaneous defend-
attack moves and sequential defend-attack moves
with private information. Thus, we view the three
models treated here as basic model building blocks
to deal with more complex problems.

Note that we have paid little attention to
the numerical intricacies associated with the need
to optimize resources at the decision nodes. Of
course, when it comes to the application to real
problems, the structuring of very complex decision
dynamics with multiple uncertainties and types
of adversaries, and the corresponding elicitation
processes and calculations necessary to find the
optimal decisions would become intractable. MCMC
methods, specially of the augmented simulation
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type, see Bielza et al. (49), might be very relevant.
However, setting up a realistic conceptual framework
of analysis is a necessary first step to consider before
we may approximate and simplify in order to find
satisfactory and meaningful recommendations for the
Defender in real applications.

Extensions of the methodology to the case in
which there are more than one attacker and more
than one defender need to be explored. In this case,
we would expect cooperation among the defenders
to share resources and reduce the risks posed by
the adversaries, possibly as described in Rios and
Rios Insua (50,51). The ARA approach would provide
internal advice to the group of defenders using
external predictive models of the attackers’ decision
behavior, which would also include the possibility of
cooperation among various attackers.

Finally, note that the ARA framework might
find applications in other contexts. Areas such as
marketing and cybersecurity seem relevant. In these
cases we might be facing a large and uncertain
number of adversaries. Rios Insua et al. (35) referred
to some simple auctions. This is in line with the
recent debate between using decision analysis or
game theory models for the analysis of competing sit-
uations, well reflected in papers such as Rothkopf(52)

or van Bingsbergen and Marx (53).
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