SECONOMICS

D8.1 - Requirements and Interface

A. Schmitz, T. Schnitzler (Fraunhofer ISST)
J. Jurjens (Fraunhofer ISST & TU Dortmund)
D. Rios (URJC)

J. Williams (ABDN)

S. Houmb (SecureNOK)

Pending of approval from the Research Executive Agency - EC
Document Information

Document Number D8.1

Document Title Requirements and Interface
Version 1.0

Status Final

Work Package WP 8

Deliverable Type Report

Contractual Date of Delivery 31.01.2013

Actual Date of Delivery 31.01.2013

Responsible Unit Fraunhofer ISST
Contributors Fraunhofer, TUD, URJC, ABDN, UNITN, SNOK
Keyword List Tool Platform Support
Dissemination level PU

SEVENTH FRAMEWORK
PROGRAMME

P>\

il

Security Economics: Socio economics meets security
Y i

- o

Pl

SECONOMICS

SECONOMICS Consortium

SECONOMICS ““Socio-Economics meets Security” (Contract No. 285223) is a Collaborative
project within the 7th Framework Programme, theme SEC-2011.6.4-1 SEC-2011.7.5-2

ICT. The

consortium members are:

DI TRENTO

UNIVERSITA DEGLI STUDI

Universita Degli Studi di Trento
(UNITN), 38100 Trento, Italy
www.unitn.it

Project Manager: prof. Fabio MASSACCI
Fabio.Massacci@unitn.it

° BLUE

DEEP BLUE Srl (DBL)

00193 Roma, Italy
www.dblue.it

Contact: Alessandra TEDESSCHI
Alessandra.tedeschi@dblue.it

\

Z Fraunhofer
ISST

Fraunhofer-Gesellschaft zur Forde-
rung der angewandten Forschung
e.V., Hansastr. 27c, 80686 Munich,
Germany
http://www.fraunhofer.de/

Contact: Prof. Jan Jurjens
jan.juerjens@isst.fraunhofer.de

Universidad
Rey Juan Carlos

UNIVERSIDAD REY JUAN CARLOS,
Calle TulipanS/N, 28933, Mostoles
(Madrid), Spain

Contact: Prof. David Rios Insua
david.rios@urjc.es

% UNIVERSITY
¥ or ABERDEEN

THE UNIVERSITY COURT OF THE
UNIVERSITY OF ABERDEEN, a Scottish
charity (No. SC013683) whose prin-
cipal administrative office is at
King’s College Regent Walk, AB24
3FX, Aberdeen, United Kingdom
http://www.abdn.ac.uk/

Contact: Prof. Julian Williams
julian.williams@abdn.ac.uk

Transports
Metropolitans
de Barcelona

FERROCARRIL METROPOLITA DE
BARCELONA SA, Carrer 60 Zona
Franca, 21-23, 08040, Barcelona,
Spain
http://www.tmb.cat/ca/home

Contact: Michael Pellot
mpellot@tmb.cat

AteS

ATOS ORIGIN SOCIEDAD ANONIMA
ESPANOLA, Calle Albarracin, 25,
28037, Madrid, Spain
http://es.atos.net/es-es/

Contact: Silvia Castellvi Catala
silvia.castellvi@atosresearch.eu

OSECURE OK

SECURE-NOK AS, Professor Olav
Hanssensvei, 7A, 4021, Stavanger ,
Norway

Postadress: P.O. Box 8034, 4068,
Stavanger, Norway
http://www.securenok.com/

Contact: Siv Houmb
sivhoumb@securenok.com

SOl

Institute of Sociology AS CR

INSTITUTE OF SOCIOLOGY OF THE
ACADEMY OF SCIENCES OF THE
CZECH REPUBLIC PUBLIC RESEARCH
INSTITUTION, Jilska 1, 11000, Praha
1, Czech Republic
http://www.soc.cas.cz/

Contact: Dr Zdenka Mansfeldova
zdenka.mansfeldova@soc.cas.cz

10

nationalgrid

THE POWER OF ACTION

NATIONAL GRID ELECTRICITY
TRANSMISSION PLC, The Strand, 1-3,
WC2N 5EH, London, United Kingdom

Contact: Dr Ruprai Raminder
Raminder.Ruprai@uk.ngrid.com

11

@D ANADOLU UNIVERSITESI

ANADOLU UNIVERSITY, SCHOOL OF
CIVIL AVIATION Iki Eylul Kampusu,
26470, Eskisehir, Turkey

Contact: Nalan Ergun
nergun@anadolu.edu.tr

ol

SECONOMICS

Document change record

Version Date Status Author (Unit) Description
0.1 2012-06-18 Draft Andreas Schmitz (ISST) Table of Contents
0.1 2012-06-18 Draft Jan Jirjens (ISST) Verify Table of Contents
0.1 2012-08-28 Draft Fabio Massacci (UNITN) Contribution for Section 2.6
0.1 2012-09-22 Draft Siv Houmb (SecureNOK) Contribution for Section 2.5
0.2 2012-12-05 Draft Andreas Schmitz (ISST) Full draft of deliverable
0.2 2012-12-05 Draft Sebastian Pape (TUD) Review draft
0.2 2012-12-05 Draft Jan Jurjens (ISST) Review draft
0.3 2012-12-19 Draft Michela Angeli (UNITN) Quality check
0.4 2013-01-11 Draft Javier Cano (URJC) Scientific review
0.5 2013-01-13 Draft Julian Williams (ABDN) Contribution
0.6 2013-01-13 Finalizing | Andreas Schmitz (ISST) Finalizing deliverable
0.6 2013-01-18 Finalizing | Theodor Schnitzler (ISST) Assistance
0.7 2013-01-23 Finalizing | Fabio Massacci (UNITN) Scientific review
Woohyun Shim (UNITN)
1.0 2013-01-29 Final Andreas Schmitz (ISST) Final deliverable

/1

SECONOMICS

Table of Contents

D8.1 - Requirements and INTEITACEcocveieirieseeee ettt ns 1
SECONOMICS CONSOITIUM ...utiiiieititetetetete ettt ettt ettt sttt ebe st bt e b et etk e ne b et s b et st e et ebe st ebe s ebenes 2
[o101 a =T o] Mol n =T g o L= =T oo o SRS 3
TADIE OF CONTENTS ..ottt sttt b ettt e e bt et esbe s benbenteaesbesb e be st ene et shensensenis 4
TADIE OF TIGUIES ...ttt b et sttt b et s b s bea b e st ebesbe s b e te st s ebesbenseneenas 7
EXECULIVE SUIMIMAIYooviiiiiiietietieteeteete sttt et st e et e st e beeteesbe st e esaesseebeessassesbeessessesssensassesssessansesssessansesse senbenses 8
L INEFOAUCTION ..ttt b ettt b et b et b bt ne bbbt se s bt et ebenennebenes 9
1.1 AIM OF WPttt s et e et e st a et e s enen e s et et enene e s enenens 9
1.2 DOCUMENT OVEIVIEW ...ttt sttt ettt et be s bbbt s bbbt bt st e e be st st e st se b e e 10
1.3 Definition of the stakeholders of the tool platform..........ccccevevenincenesiecceeceeee e 10
2 Evaluation of different available T0O0IS ... e 11
2.1 ECONOMIC MOOEI ..ottt sttt sttt be st sbesae st estebesbentens 11

2.1.1 Essential Features of a Mathematical Programming Features for Economic Models 11

2.1.2 An example of a data envelope problem for a Nash equilibrium.............cccceevvrvennnee. 12
2.1.3 Meta-code for a general form of the Envelope Problemccccovviveiiiinicciieeeenn, 13
2.1.4 Meta-code for the attack and defense game..........cccevreieieincenenerec e 14
2.1.5 Problems and development issues envisioned in SECONOMICS..........cccccvvvrvveneneenenne. 16
2.2 Adversarial RiSK ANGIYSIS........coiiiieieiiiieieee ettt st sttt sbe et eae st 17
2.2.1 BASIC ARA MOUEIScuieiieiiiieeeee ettt st sttt sbe bt aesaesbens 18
2.2.2 GAME ThEOKIY ...ttt sttt b e st eae et sbesbe b e st ebesaesaen 18
2.2.3 Simultaneous Defend-AttaCk-SCENAIIO........ccuviuiririiirieirieereeeeee e 19
2.2.4 The ARA APPIOACK ..ottt et ettt s reereeaesteeanens 20
2.3 GEBNIE . e bRt e e Rt et e e re s eneeaenre s 21
2.3.1 DESCHIPLION ettt ettt sttt ettt e te st e e st e ste et e tesbeese e besbeeseessesbesseansesteensesessennnansessenes 21
2.3.2 Inability of GeNle to solve the Sequential Defend-Attack problem.........c.ccocvvvennnnee. 23
24 BUGS -ttt ettt ettt sttt ettt et h e e bt e sh e e ea et et e et e e be e be e beeahe e eheeeheeeabeeabeeabe e beeabeeeaee e ebeenbeenbeenne 27
2.4.1 DESCIIPTION ...ttt ettt ettt b e sbe st e b et et e e bt s be st et ebeebesbesbenseneebesaesaen 28
2.4.2 Inability of OpenBUGS to solve the SEQ-DA problemcccoveeveiiiicveciceeee e, 28
2.5 SEBCINVEST .ttt ettt n e e nenes 30
2.8 SECMER .t b et sttt e be bt e ebe e she e sheenheees ebeenbeene 31
2.7 MAUAD OVEIVIEW ..ottt ettt sttt b e s bt et besbesbese et eaeebesbesbens 33

/1

SECONOMICS
P T OF ¢ 111 1T OO OO OTSP SRR 34
Techniques and possibilities of the tool platform ... 38
3.1 Matlab Java CONMNECTIONc.ciiiiericirie ettt ettt st benea 38
N | USSR 38
3.1.2 RMI - Remote Method INVOCATIONcccoeruirieiiirinienieteeeete et 38
3.1.3 MAtlaDCONTIOL ...ttt sttt sttt be b neen 39
3104 MAIAD BUITAET ...ttt s sttt sttt be b seen 39
3i2 B CIPSE ettt bbb b e bbbt a e e bbb e b et heeae et et ebeebenean 40
3.3 PlIUGIN INTEITACE.......i ittt ettt st sttt b e st sbe et e st ebesbeseens 41
3.4 Creation of graphiCal EAITOrS........cciiieiiiicecee ettt et st reeraens 42
3.4.1 Eclipse Modeling FrameWOIKc.ccueciriiiierieieiriiseieee ettt te s se e s s seeseenas 42
3.4.2 ECOre Meta-MOGEL.........ccooiiiiieieieiie ettt 43
3.4.3 Graphiti FFAMEWOTKcoiiiieeiiieetesteete ettt sttt saebesbeennensesseennen 44
[BDISR [o g o) il (ool Io] F= U (o] o o OSSR SSSRP 46
4.1 OVErview OF The dESIONccueieiieeiee ettt sttt be b ste bbb b 46
4.2 Design of the integrated FrONTENGccoiiiiiiieiiine e 46
A.2.1 GENEIAL ...ttt bbb ettt s 46
4.2.2 INtegration iN dETAIccccvverieieece ettt ns 47
4.2.3 Different parts of €aCh MOdElc.ccoeiiiiiieiecee s 48
4.2.4 User interface of the integrated tOO0l DOX........ccccocveiirererieiecesieseeeee s 48
4.2.5 LeVel OF ADSTIACTIONccoouiiiiieieieee ettt sttt bbb 49
4.3 DesSign of dIiffErent tOOIS........cov ittt aesreenaen 51
4.3.1 Influence Diagram EdITOr ...ttt st s 51
4.3.2 DeCiSion tree VISUBHZATIONc.ccoivivieirieiricenicree et 52
4.3.3 Adversarial RiSK ANGIYSIS.........cveieiririireieiee ettt sttt st sae s eseeeas 52
4.3.4 ECONOMIC VISUBHZATION ..ottt e 54
4.3.5 Return on Security INVESTMENT..........c.coviiiirieieiriseee ettt eeas 58
4.3.6 BPMN oottt ettt ettt ettt sen et st ae s et s eten sesenas 58
4.3.7 SEALISTICAI TOON ...ceieiieieeeeee ettt st s 60
4.4 Links t0 Other WOrK PACKAGESccoiriirieieirierierte ettt sttt st sbe et ene 61
4.4.1 WOIK PACKAGE 4 ...ttt ettt ettt et ettt et e st st ab et e s aeessebeesaessesbeesnansesseennan 61
4.4.2 WOIK PACKAGE Dottt sttt ettt et s b st as et e s taesb et e e raens e besanensesaeenean 61

4.4.3 WOIK PACKAGE B....oceveeieieeeeecie sttt sttt ettt et st e e s b e st ab et e s seeasebessaensebeessensesseennen 61

5
6
7

ol

SECONOMICS

R0 o] g P T Y= L o [oTo] o Tod (V1] To o PR OR

=TT o] T T0 =T])7/ TSR

Appendix 1

Table

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

f“:}/l

SECONOMICS

of figures

a worked example with simple functional formsccooiiiiiia.s.
Simultaneous Defend-Attack Modello
Example Influence Diagram showing a DA Model with private information
Defender-Attacker Example visualized with GeNle Modeler......................
The Sequential Defend-Attack model..........coiiiii it
The Defender’s decision problem ... i
GeNle model for the Defender’s decision problem ...,
The Defender’s analysis of the Attacker’s problemooiiiiiie
GeNle model for the Defender’s analysis of the Attacker’s problem............

Figure 10: Snapshot of OpenBugs examplecooiiiii e
Figure 11: OpenBUGS model for the Defender’ decision problem...........................
Figure 12: Bayesian Belief Network topology of the Secinvest decision engine...........
Figure 13: Conceptual model of SECMER.. ...t eaes
Figure 14: SeCMER arguments meta-model............. i aeaes
Figure 15: The user interface of CariSmaooviiiiiiiii et ieeeeee e
Figure 16: Evolution analysis pipelinecoo e
Figure 17: Carisma Tool ArChITECTUIE ...t eeeeees
Figure 18: Remote control a Matlab session with “matlabcontrol”
Figure 19: Execution of exported functions in Matlab Compiler Runtime
Figure 20: Relations between concrete classes and the Eclipse Plugin interface.........
Figure 21: Scheme of ECore meta-modelo
Figure 22: Feature concept of Graphiti
Figure 23: Schematic structure of the toolbOX ... e
Figure 24: Concept of the tool framework with Matlab integration.........................
Figure 25: User interface of Carisma with a frontend for a Matlab implementation

running in the backgroundoooiiiiiiiii e

Figure 26: DA Model in Influence Diagram Editor Prototype........cccoiiiiiiiiiiiieannnnns
Figure 27: Example decision tree with defender D and attacker A and State S...........
Figure 28: Kahnemann-Tversky type loss function with fixed points about the target

LV L=] FR o) O = 1 (o A

Figure 29: Loss Function Illustration: Expected loss from vulnerabilities versus

INVeStMENTt PENALITIES e

Figure 30: The trade-off curve is the difference between these two losses...............
Figure 31: First row: Deviation from the equilibrium from a single unit shock in C;

Second row: Evolution of Control variable; For example 1 and 2...............

Figure 32: Simple BPMN process with parallel sequence flows...........c.oooiiiiiiiiiiia.
Figure 33: Extended BPMN process with risks and mitigationsccooiiiieninnns

P d

SECONOMICS

Executive summary

This report will evaluate the main tools and models in relation to the new toolbox pro-
vided by our partners. Furthermore the requirements of our partners regarding this
toolbox will be gathered and analyzed. Some ideas for comfort increasing editors to
support the models from our partners implemented in the toolbox will also be present-
ed. An implementation strategy for the toolbox will be defined. Especially the imple-
mentation of the models, the implementation and design of the editors and the whole
all surrounding framework will be shown. Further the links to other work packages will
be pointed out. These are the presumable requirements, which will be implemented for
the next deliverables. For this deliverable a prototype was implemented.

SECONOMICS

1 Introduction
This first report illustrates the requirements for and the interface of the SECONOMICS
toolbox developed within WP8 at Fraunhofer ISST.

The report is divided into an evaluation of tools to be used for our platform, further
techniques and possibilities our toolbox will make use of, and a presentation of the
methodology and the design of the platform.

We will start this report with pointing out the aim of our work package in general, fol-
lowed by an overview of this report and a definition of the different stakeholders using
our integrated tool platform.

1.1 Aim of WP8

In this section we aim at giving a brief description of the targets of WP8. The main goal
of WP8 is to develop an integrated toolbox for the SECONOMICS project. Why is an inte-
grated toolbox needed? Different from developed methodologies, the models developed
in this project are computer-assisted and computationally intensive. Due to this, com-
puter implementations are needed. As will be explained in chapter 4, these implementa-
tions can be done with Matlab. The different models shall be integrated into one tool in
WP8. The main advantage is that, rather than being just a collection of Matlab imple-
mentations; the tool is guided and easy to use, with all different models having the
same interface with a homogeneous view. So the work done in WP8 is structured into
the following steps. First, an overview of the existing tools used or developed by one
partner of the consortium should be given and they should be evaluated. Within this
evaluation, some of the tools can be used or integrated within this toolbox (for example
Matlab), while from other alternative tools good ideas can be gained (for example Ge-
Nle). After knowing the available tools, the requirements for such a platform have to be
determined and the interfaces between the tool framework and the models have to be
defined. After and while defining the requirements in WP8 the necessary technology has
to be found and evaluated. This technology includes techniques to integrate the tools,
especially Matlab, a modeling framework, Graphiti in our case, and a graph drawing en-
gine like jMathtools or Gnuplot. Specifically, a good drawing engine has still to be found
and evaluated and the best solution should be used. One of the most important tasks in
WP8 is the design of the tool and the tool framework. It has to be specified how the dif-
ferent model implementations can be integrated, how they can be visualized, how edi-
tors can aid with the models and the interfaces between the tool framework and the
models has to be designed. The tool should be easy to use, have an integrated and ho-
mogeneous view, the tools should be neatly arranged, while it should be still easy to ex-
pand. The second important task is the tool implementation. The tool framework has to
be implemented and aid for the models will be given. After all, WP8 shall deliver an
easy to use integrated tool box.

_ .
- "’:::":\G‘-' :'.\- "‘q_‘f;'Q
\ \

SECONOMICS

1.2 Document Overview

e First, we point out the different stakeholders of our tool in section 1.3.

¢ In chapter 2, we evaluate different tools used or developed by one partner of this
project. We also evaluate third party tools that can be useful for the develop-
ment of our toolbox. Therefore, we also analyze to what extent these tools meet
the requirements of our toolbox. All the presented tools show the expertise and
give general ideas for the implementation of specific parts of our toolbox.

e In chapter 3, we present different techniques we will use in our tool platform,
and we also point out its resulting possibilities.

e In chapter 4, we explain the methodic, the general design of the platform and the
integration of each available model. We also present approaches for different
tools designed within our toolbox. Furthermore, we point out the links to the oth-
er work packages, respectively which concepts or parts of our toolbox are used by
which partner.

¢ In chapter 5, we conclude this report by summarizing its main ideas.

1.3 Definition of the stakeholders of the tool platform

The tool that will be developed in WP8 of SECONOMICS will comprise an integrated tool,
which will aid in using the mathematical models developed in this project, by providing
different levels of abstraction, as well as an easy interface for using the models, like
visual editors for specific instances of a model class, and easy entering of parameters by
providing wizards.

Many people might be influenced by this tool when it is used for analyzing security and
the results are to be implemented. So, we provide here some ideas about the different
kind of stakeholders present in this project. The stakeholders will use the tool expecting
to gain advantage out of the results. They can be structured by two different dimen-
sions. The first dimension is hierarchical, i.e. according to their position in the target
company. In the target company it is necessary to use this tool with different kinds of
users at different hierarchical levels of the company, because the needed information
and knowledge are only available at different levels. Hence, the tool is also structured
in different levels of abstraction. On the lowest level we have designers of the model
classes, who are mostly the universities within this project. At the second level we
might have a model designer of a specific instance of one class. This might be a consult-
ant, who knows the classes of models. Then, we have different groups of people, who
provide statistical data for calculations of the models. After that, there might be some
strategic decisions to be made. This can also be done by a consultant, with knowledge of
the model class, in cooperation with the decision maker. In the last step, the decision
maker has some key parameters which can be modified and analyzed.

The second dimension is an organizational way. Besides, the company itself, which
should reach a better level of security in one specific aspect, there are several different
stakeholders, who are different depending on the case study. In most cases, they will be
regulators.

10

SECONOMICS

2 Evaluation of different available tools

In this chapter, already existing free and commercial tools are evaluated, with respect
to their possible reusability within the tool platform of WP8. In addition, tools delivered
from other work packages are also presented as well as third party tools.

2.1 Economic Model

At the heart of the SECONOMICS project is a tool that can evaluate security problems
and make predictions on behavior using economic concepts. For this purpose the
SECONOMICS tool needs to have a robust mathematical underpinning, grounded in an
economic methodology. Generally we think of economic methodologies as modeling be-
haviors using of agents in an economic system with well specified pay-off functions that
relate observed metrics to levels of welfare. Deliverable 6.1 reviews the relevant formu-
lations of a variety of economic models that are applicable to the SECONOMICS domain,
specified in the case study work packages WP1, WP2 and WP3.

2.1.1 Essential Features of a Mathematical Programming Features for Economic
Models

For research purposes functional programming is a useful tool for defining and evaluat-

ing models based on mathematical functions. For example in adversarial game theory

mathematical models can be used to evaluate the pay-offs for various agents acting

strategically by maximizing their individual pay-off functions.

For particular types of games this can involve a complex series of optimizations that are
often characterized by ‘embedded envelope’ problems. In an envelope problem a series
of variables can also be a series of functions. For instance a hyper surface g(.) in n di-
mensional space maybe represented by a series of parametric equations x(c), where X is
a vector and c is a parameter (or vector of parameters in the general case). The enve-
lope of a family of curves is when g(x,c)=0, whereby the curves that satisfy this condi-
tion have a point that satisfy an arbitrary point of tangency (usually describing an equi-
librium).

The requirement of a modeling tool should be that is can solve well specified envelope
problems of a general nature. Algebraically this is defined in the following steps. Con-
sider a standard microeconomic problem:

max f(x,r), st g(xr)=0

Here f is a function translating control variables x under a set of constraints character-
ized by the vector function g and O is an appropriate length vector of zeros. We assume
a Lagrangian view of systems, rather than a Kuhn-Tucker approach (whereby g(x,r)=0),
as most Kuhn-Tucker problems can be expressed as simpler Lagrangian problems by basic
rearrangement of the initial problem. Here r is a vector of parameters of state that
characterize the economic interactions.

This simple setup characterizes the majority of economic mathematical problems,
agents are represented by their payoff functions and seek to maximize their payoffs by
acting strategically. The actions of other agents typically enter their payoff function
through the constraints in g.

11

SECONOMICS

Setting,
X (r)=argmax f(x,r), st. g(x,r)=0

X

and
f(r)= f(x*(r),r)
We can restate the problem as a generalized Lagrangian constrained optimization:
L(x,r)= f(x,r)- 1g(x,r)
where A is a vector of Lagrange multipliers with elements equal to the length of g and -
represents the dot product of two vectors.

Equilibrium is defined by:
oL (x,r)
or,

i x=x (r), A=A(r)

2.1.2 An example of a data envelope problem for a Nash equilibrium
Consider the following problem. Let there be two representative agents in the system,
attackers and targets. Attackers maximize their payoff

Ty = RO'(NA,XT)—C(NA)
Where R is the reward for a successful attack, o(.) is the probability of a successful at-
tack as a function of the number of attacks Nx and the level of defensive effort xr and
C(.) is the cost of attacking as a function of the number of attacks Na. Targets seek to
minimize losses and as such have the following payoff function
—1ty = Lo (N, %)+ D(x;)
Where L is the loss to the target given a successful attack and D(.) is the cost of defense
as a function of the chosen level of defensive effort. Attackers and targets are assumed
to have representative budget constraints, such that:
C(N,)-c=0
D(x)-d=0
where ¢ and d are constants. The envelope problem in this case is derived from the fol-
lowing set of problems:
Max 7z, = mNilxRa(NA,xT)—C(NA), st. C(N,)-c=0
and
max— 7, =min—Lo(N,, %)—D(x;), st. D(x)-d=0

For notational purp(T)ses we aI;o set:
N, =argmaxRo(N,, %)-C(N,), st. C(N,)-c=0
Na
and
X; =argmin— Lo (N,, %)-D(X;), st. D(x;)-d=0

The equilibrium solution for this pair of equations is relatively simple.

First we set out the Lagrangian problem for the attacker:

12

/1

SECONOMICS

L,(N,.x;)=Ro(N,x;)-(1-2,)C(N,)-c

and

Ly (N,.x;)=-Lo(N,.x;)—(1-A;)D(x,)-d
For the attacker the envelope problem is:
oL, (N,.x;)

e S P T
and for the target the solution is of the form:

oL, (NA,xT)
oN,

xp=xp(Ny)s Ap=27(Ny)

For the attacker the solution is of the form, the optimal number of attacks N'a for a giv-
en level of exogenous representative defensive effort xy. For the defender the solution
is of the form of the optimal defensive effort, x't, with respect to an exogenous level of
attacking intensity Na. There is a final equilibrium solution whereby:

This is the best response of attackers to the best response of targets, this is known as
the Nash equilibrium and is the predicted level of attacking intensity and defensive ef-
fort, given a set of chosen functional forms of o(.), C(.) and D(.) and the constants R, L,
c and d.

2.1.3 Meta-code for a general form of the Envelope Problem

This section builds a set of meta-codes for the general envelope problem per agent. In
this case we assume that we have a constrained optimization solver that uses a conven-
tional approach such as sequential quadratic programming to obtain an unconstrained
minimum.

First we construct a series of function declarations for the objective function and con-
straint.

function [f]=fun(x,r)
f=eval (arguments in, global wvariablesg)%this is an arbitrary func-
tional form

function [g]l=con(x,r)

g=eval (arguments in,global wvariables)%this 1s an arbitrary con-
straint

function [x0]=init (r)

x0=eval (arguments in, global variables)%this function builds a set
of initial values for x, for the optimiser

13

/1

SECONOMICS

next we build a new function that will run the optimization.

function [xstar]=envelopeeProblem(r_upper,r lower,diff)
% r upper is a list of upper bounds for the state variable r
% r lower is a list of lower bounds for the state variable r
$diff is a scalar or equivalent length list of finite differences
for the optimisation.
$first check the consistency of r upper and r_ lower
n=length (r upper)
if n~=length(r_ lower)

error (Tupper and lower bounds are not consistent’)
end
$we now build an array that will contain the optimal wvalues of
rstar
R=cell(n,1l);%a cell is an unstructured array
for i=1:n

rarray=r lower (i) :diff (i) :r upper(i);

R{i,1}=rarray;

N (i) =1length(rarray) ;
end
$this now contains the domains over which the envelope function
will be evaluated.
xstar = zeros(N);% the intergers in N present the dimensions of
the hypersurface that will be described by xstar. This is an n di-
mensional hypersurface.
ind=index (xstar); This creates an array that indexes the elements
of xstar
for ii=ind
$this creates a vector i1i that cycles through the array R and con-
verts the loci of R into the array xstar

sym x r l%declares x r 1 as algebraic symbols

fun L=fun(x,r)-dot(l, con(x,r));

for j=1:n

r(j)=rarray{j,1}(ii(3));

]

end

x0=init (r) ;

xstar(ii)=fmax(L,x0,r,1);in the order, function, initial wval-
ues, state variables and lagrange multipliers
end

In this case we assume that we have the optimization functions fmin, index, sym and
fun that respectively are: a functional minimization; a means of indexing a hyper di-
mensional array; a means of declaring function arguments and a function declaration
that detects the pre-specified functions for the envelope problem.

The output array xstar may then be outputted and sent to another envelope function
as its array of state variables r (as in a game theory problem).

2.1.4 Meta-code for the attack and defense game

The previous code allows for an n-dimensional envelope problem that solves a con-
strained min-max optimization problem. For most applications the dimension of x and r
are usually unity, problems of higher dimension than two or three are difficult to con-

14

SECONOMICS

ceptualize and most economic applications agents would be considered unrealistically
hyper-rational to solve such complex problems.

For the attack and defense game, Na serves as x for the attacker and xr is r. For the de-
fender the situation is reversed, Xt serves as x for the attacker and N, is the state varia-
bler.

We shall now outline meta-code for solving such a game. First we must define a series of
functions for the various elements of the payoffs for the attacker and the target.

function s=sigma (NA, xT)

s=eval (input arguments and any global variables)
function C=costAttack (NA)

C=eval (input arguments and any global variables)
function C=costDefence (xT)

D=eval (input arguments and any global variables)
function NAO = initialAttackerEffort (xT)

NAQ =eval (input arguments and any global variables)
function xT0 = initialTargetEffort (NAT)

xT0 =eval (input arguments and any global variables)

$Note that we keep the functional forms of sigma, costAttack,
costDefence problem specific at this juncture.

Next we need to set the envelope problem solvers for the attacker and the targets.

function
[NAstar] = attackerEnvelopeProblem(xT lower,xt upper,diff)

xT array= xT lower:diff:xt upper; builds an array of xT over a set
domain
NAstar=zeros (length (xT,array)) ;
for i=1:length(xT array)

sym NA xT R ¢ l1l%declares the variables

xT=xT array (i) ;

fun LA = R*sigma (NA,xT)-(1 - 1)*C(NA)-c¥%declare the Lagrangian
form of the optimisation.

NAO= initialAttackerEffort (xT)

NAstar (i) = fmax(LA,NAO,xT,1);one dimensional maximisation
problem.
end

In this step we compute the optimal defensive effort as a function of attacking intensity.

function

xTstar = targetEnvelopeProblem(NA lower,NA upper,diff)

$in this case a sensible starting point is the limits (NAstar) from
the first optimisation.

NA array= NA lower:diff:NA upper; builds an array of xT over a set
domain

xTstar=zeros (length(NA array)) ;

for i=1:length(NA array)

15

_ .
- "’:::":\G‘-' :'.\- "‘q_‘f;'Q
\ \

SECONOMICS

sym NA xT L d l%declares the variables

NA=NA array (i) ;

fun LT = L*sigma(NA,xT)+(1 - 1)*D(NA)+d¥declare the Lagrangian
form of the optimisation.

XxT0= initialDefensiveEffort (xT)

NAstar (i) = fmax(-LT,xXTO,NA,1l) ;one dimensional maximisation
problem.
end

To compute the Nash equilibrium we simply need to interpolate and overlay the curves
of X't (xTstar) and N'a (NAstar) and compute points of intersection. If only one point
of intersection exists then the problem is said to have a unique Nash equilibrium (i.e.
the best response of attackers to the best response of defenders). See Figure 1 for a
worked example with simple functional forms.

For most economic applications the form of the payoff and constraint functions are kept
deliberately simple, to allow for a tractable solution. However, in SECONOMICS we envi-
sion that many of the problems faced by the security case studies (outlined in delivera-
bles 1.3, 2.3 and 3.3) will be more complex and require the types of numerical solutions
that may be solved using the types of mathematical approaches outlined above.

2.1.5 Problems and development issues envisioned in SECONOMICS

A major issue for practical use of economic methodologies for predicting security behav-
ior is that the cost and reward functions have highly unusual properties. They normally
exhibit substantial discontinuities and have functional forms not readily described by
simple mathematical functions, even in a piecewise fashion.

This provides a substantial difficulty for conventional optimization engines based around
quadratic programming and quasi-Newtonian methods. This affects the choice of solver,
represented by fmax in the meta-code.

Several alternative approaches exist other than sequential quadratic programming solv-
ers and their analogues. Most solvers that overcome the problems inherent in quasi-
Newtonian solvers do so by negating the computation of the Hessian matrix of second
order derivatives.

Two approaches that have been used are: Monte-Carlo methods and the related genetic
algorithms.

Monte-Carlo approaches effectively randomly sample the space of the vector variable x
and evaluate the function at each point. The basic optimization then records the func-
tion evaluation that achieves the maxima. The larger the number of trials the more like-
ly the optimization is likely to find the optimal point.

An obvious drawback is that the space of x maybe very large and as such a huge number
of repeat trials maybe needed to achieve any confidence in the result. Even for one di-
mensional optimization problems a simple Monte-Carlo with a fixed distributional drawn
is incredibly inefficient.

An alternative approach that keeps the Hessian free nature of simple Monte-Carlo simu-
lations are genetic algorithms. These importance sample the draws of the vector x and

16

SECONOMICS

derive new distributions of draws based on the history of observations from prior distri-
butions in a Bayesian set-up.

For instance a simple genetic algorithm could work as follows: For a vector function
f(x), start with an initial guess x0 population X0 of draws (usually greater than 20) of x,
from a multinormal distribution with preset covariance matrix Q and centered on x0
(unfortunately few solvers are assumption free). Find the draw from X0, denoted x1 that
achieves the maxima of f(x). Centre the next set of draws X1 at x1 with covariance ma-
trix (x0- x1) (x0- x1)”, where ~ denoted the conjugate transpose. Each generation re-
tains the best moment attributes of the prior generation. If the function has a tight
global minima, then with enough generations and a large enough number of draws per
generation, the algorithm will converge tightly to the global minima.

An example of matching reaction functions for a data envelope problem for an attack
and defense game is shown in Figure 1. In this case the attackers and targets have both
a numerical (unbroken line) and analytic solution (dashed line) to the envelope problem.
In this case we assume that costs of security investment and attack are linear and the
probability of successful attack follows Gordon and Loeb’s 1/e rule. See Deliverable 6.1,
section 9 for a more detailed explanation of this approach.

Responses of Attackers and Targets

Level of Defensive Expenditure, x;

Figure 1: a worked example with simple functional forms

2.2 Adversarial Risk Analysis

Adversarial Risk Analysis is a concept to describe and evaluate attacks on systems. This
concept is described in detail in [12] and is based on game theory, but this theory was
modified in various points to match the attack-defend-scenario. ARA aims at providing
one-sided prescriptive support to one of the intervening agents, the Defender, based on
a subjective expected utility model, treating the adversary’s decisions as uncertainties.
In order to predict the adversary’s actions, it models his decision problem and try to as-
sess his probabilities and utilities. Assuming that the adversary is an expected utility

17

g i

\: - {

SECONOMICS

maximizer, we can predict the adversary’s actions by finding his maximum expected
utility action. Uncertainty about the adversary’s probabilities and utilities is propagated
over to the adversary’s decision. Sometimes, such assessment may lead to a hierarchy of
nested decision problems. They apply the ARA framework to five prototypical models
relevant in security risk analysis.

2.2.1 Basic ARA models
The Basic ARA models are:

e Sequential Defend-Attack (SEQ-DA). In this model, the Defender first makes a de-
cision about his defend policy and after that the Attacker chooses his attack, de-
pending on the Defender’s strategy.

e Simultaneous Defend-Attack (SIM-DA): In this model, the Defender and Attacker
choose their policy independent from each other, i.e. the Attacker does not now
the chosen defense policy.

e Sequential Attack -Defend (SEQ-AD). In this model, the Attacker first performs an
attack. Then, having suffered it, the Defender chooses a defense

e Sequential Defend-Attack-Defend (SEQ-DAD): In this model, the Defender first de-
ploys defensive resources. Then, the Attacker, having observed such decision,
performs an attack. Finally, the Defender tries to recover from the attack as best
as she can (for example, by calling for support).

e Sequential Defend-Attack with Private Information (SEQ-DA-PI). In this model, the
Defender wants to keep secrecy about vulnerabilities of sites she is trying to pro-
tect, as this information can be used by the Attacker to increase the chances of
success and the expected impact of an attack. In this model, the Defender moves
first by choosing a defense and, then, having observed it, the Attacker moves by
choosing an attack.

2.2.2 Game theory

In the following, a brief explanation of game theory will be given. Game theory is an
economic approach to model decision making situations. The result of the game depends
not only on the decisions made by one actor, but on the decisions of all actors in the
game. Therefore all actors affect each other. A game is defined by a set of actors, ac-
tions, possible final states and, associated with them, a reward distribution for each ac-
tor. An actor is a participant of the system. He has different possible actions at choice.
A basic assumption of game theory is that an actor always tries to maximize his utility
function, given as the reward of the game, or to minimize his loss function. The reward
of the game depends on the achieved final state, which in turn, depends with different
probabilities on the chosen actions of all actors. There are different information distri-
butions. The first possibility is that an actor knows the action of the other one, which is
called a sequential game. This means, that the actor, whose decision is known, has to
choose first. Another possibility is that no one knows the action of the other one. Then it
is a simultaneous game.

The simplest scenario is the Simultaneous Defend-Attack-Scenario, abbreviated as SIM-
DA. This is a game theoretical scenario, where the defender first has to choose his de-
fending strategy. With the knowledge of the defenders choice, the attacker makes his
decision about his attack strategy.

18

/1

SECONOMICS

2.2.3 Simultaneous Defend-Attack-Scenario

This approach is described in [11]. There are two different players in this game theoreti-
cal approach: The defender D and the attacker A. Both choose their strategy simultane-
ously without any information about the choice of the other. Let the defender have the
discrete set of choices D = {d,,d,,..,d,,} and the attacker A = {ay,a,,..,a,}. The chosen
choice of the defender is d e D and the choice of the attacker isa € A. The only uncer-
tainty in this game is the outcome of the system S, with S = 1 for success and S = 0 for
failure of an attack. Both the Attacker and the Defender have their own assessment of
the probability of the result of an attack which depends on the chosen defense and at-
tack strategy: pp(S = s|d,a) and p,(S = s|d, a). Additionally, both have a utility function
which depends on the own chosen strategy and on the result of the attack. The utility
function of the Defender is denoted as u,(d,s) and the one of the attacker is denoted
asuy(a,s). So the reward of each player depends on their choice and on the outcome of
the system. All these distributions are known by each other under the common
knowledge assumption. This assumption is very common in game theory. It assumes that
the utility functions and probability distributions are known by each player, so they are
able to optimize their own utility function and can anticipate adversary decisions.
Therefore, each player knows the expected return that both would get from the system
under a given strategy pair(d,a) € D xA. It can be computed as E[u(d,a)] =
pp(S =0|d,a) up(d,S =0)+pp(S =1|d,a) -up(S =1) for the defender and similarly
for the attacker. A Nash equilibrium (d*,a*) for this game maximizes the expected re-
turn for both:

Elu(d*,a*)] 2 E[u(d,a*)Vd €D
and
Elu(d*,a*)] 2 E[u(d*,a)Va € A

In [11] it is stressed out, that there can be several equilibriums and finding them may
require the use of randomized strategies.

(di,a1)

Gy G

(a) Influence diagram (b) Game tree (m=n=2)

Figure 2: Simultaneous Defend-Attack Modell

One improvement to the game theoretical approach is to drop the common knowledge
assumption and use probability distributions instead of the utility function and other

19

g i

\: - {

SECONOMICS

knowledge about the attacker. This makes the calculations more realistic and can be
well used in these case studies.

2.2.4 The ARA Approach
More realistically, we weaken the common prior knowledge assumption. We assume that
we support the Defender in solving the Simultaneous Defend-Attack model. As reflected
in Figure 2, the Defender has to choose a defense d € D, whose consequences depend on
the success of an attack a € A simultaneously chosen by the Attacker, which is, there-
fore, uncertain for the Defender at the time she makes her decision. By standard deci-
sion theory, the Defender should maximize his expected utility. He knows his utility
function u,(d, s) and his probability assessment p, over S, conditional on (d,a). Howev-
er, he does not know the Attacker’s decision a at node A. He expresses his uncertainty
through a probability distribution (A = a). Then he should find the optimal defend de-
cisiond*. To be able to solve the equitations for that, the Defender needs to
sess mp(A). To do so, suppose he thinks that the Attacker is an expected utility maxim-
ize. The Attacker would look for the attack a* € A providing him maximum expected
utility. In general, the Defender will be uncertain about the Attacker’s utility function
and probabilities (u,, p4, m4) required to solve such problem. Suppose that we model all
information available to the Defender about (uy,p4s ms) through a probability
tion (Uy, P4, T1,). Then, and this will aid us in assessing , (4).
Although (Ua, Pa) could be directly elicited from the Defender, eliciting I1,(D) may re-
quire further analysis, leading to the next level of recursive thinking: the Defender
would need to think about how the Attacker analyses her problem. Note that I1,(D) in-
corporates two sources of uncertainty:
e the Attacker’s uncertainty about the Defender’s choice, represented through his
beliefs m,(A), and
e the Defender’s uncertainty about the probabilistic model 4 used by the Attacker
topredict what the Defender will choose, assessed from her perspective through
Ty ~ [.
In the above, the Defender presumes that the Attacker thinks that he is an expected
utility maximizer trying to solve a decision problem like the one described. Therefore, in
order for the Defender to assess the distribution I14(D), he will elicit (Uy, P4) ~ F from
his viewpoint, through the analysis of his decision problem, as thought by the Attacker.
This reduces the assessment of I1,(D) to the computation of the distribution

z UD(d:s)PD(S = Sld,a) HD(Al = a),
se{0,1}

D|Al~argmaxycp

a€eA

assuming the Defender is able to assess I1,(A'), where A® represents the Attacker’s deci-
sion within the Defender’s second level of recursive thinking: the nested decision model
used by the Defender to predict the Attacker’s analysis of his decision problem. To as-
sess the distribution above, the Defender needs to elicit (Up, Pp)~G, representing his
probabilistic knowledge about how the Attacker may estimate the Defender’s utility
function uj,(d, a) and the corresponding probability p, over S|d, a; when he analyses how
the Attacker thinks about his decision problem. Again, the elicitation of I1,(A') might
require further recursive thinking from the Defender. This would lead to recursive as-
sessments.

20

SECONOMICS

To simplify the discussion, we have assumed that the recursive decision models used to
assess A; and D; are a reflection of each other. Moreover, the choice sets for the De-
fender and the Attacker are the same in all the recursive models: D and A, respectively.
This hierarchy of nested models would stop at a level in which the Defender lacks the in-
formation necessary to assess the distribution F‘ or G* associated with the decision anal-
ysis of A' and D! , respectively. At this point, the Defender would holistically assign an
unconditional probability distribution over A* and Dt, respectively, without going deeper
in the hierarchy, summarizing all remaining information he might have through the di-
rect assessment of I1,i-1 (4%) or I1,:(D"), as might correspond.

This should only give a short introduction. For further knowledge of this model or the
other ones mentioned read the corresponding deliverable D5.1.

2.3 GeNle
This chapter first we want to describe the GeNle tool, which has some good ideas and
then explain why it is inappropriate for this project to use.

2.3.1 Description

The GeNle (Graphical Network Interface) [13] software package can be used to create
decision theoretic models intuitively, using a graphical click-and-drop interface. GeNle is
the graphical interface to SMILE, a fully portable Bayesian inference engine developed
by the Decision Systems Laboratory at University of Pittsburgh and thoroughly tested in
the field since 1998. GeNle 2.0 is the latest version of GeNle. GeNle 1.0, released to the
community in 1998, has received a wide acceptance within both academia and industry.
It is free of charge for academic purposes.

GeNle permits dealing with decision influence diagrams and allows computing optimal
policies. It is also possible to create probabilistic influence diagrams that allow propa-
gating evidence and performing inference and forecast. Both exact and simulation
methods are included.

In this section GeNle is described in detail, because it provides some basic features
needed in our toolbox. GeNle enables to define influence diagrams. An influence dia-
gram shows how a target result value is being influenced by decisions and probability
states, and how these states influence each other. In Figure 3 the schematic illustration
of an exemplary DA model with private information is given.

Private Defender

Information \ Strategy i
\'_/ ~

Value for Value for

Defender Attacker S/

Figure 3: Example Influence Diagram showing a DA Model with private information

21

/1

SECONOMICS

These diagrams consist of three main node types. The most important one is the deci-
sion node. It is displayed as a rectangle and represents a decision which has to be made
by a decision maker. Most times, each decision corresponds to a unique actor but this is
not necessary in general. In the example shown in Figure 3 the two nodes called “De-
fender” and *“Attacker” are decision nodes as the actor with the same name has to
choose an action. The second node type is the value node, which represents the reward
of the system for each actor, who has to maximize this reward with his decisions. In this
example, there are two concurrent value nodes, one for each actor. One of the limita-
tions of GeNle is that it is not possible to create concurrent actors, as the system always
tries to optimize the total outcome. The third important node type is the chance node,
shown as an ellipse. A chance is in general a system state, either probabilistic or con-
stant depending on another node. In our example, there are several chance nodes. The
node called “private information”, for instance, is a probability distribution, stating
which type of system we have to protect. It could be either stable or unstable. The last
very important structure in an influence diagram is the arc. An arc shows a dependency
between two nodes. A decision can depend on a chance, if the decision is allowed to
depend on the given state of the chance. So when the decision has to be made, the cur-
rent state is already available. A chance can depend on another chance. This is possible
for two states depending on each other, or a representation of imperfect information.
This modeling of imperfect information can also be done for decisions. In our example,
the node called “Defender Strategy” represents such imperfect information for the at-
tacker. The attacker has full knowledge of the node called “Defender Strategy”. This
node depends on the defender’s decision, but it just propagates the correct information
in combination with likelihood; otherwise wrong information is delivered. Finally, arcs
can connect chance and decision nodes with value nodes. The value node then depends
on the input nodes connected to them. In the example of Figure 3, the value node “Val-
ue for Defender” is representing the outcome for the defender. It depends on the choice
made by the defender (for example, costs to implement the choice) and the result of
the system state, which is a probability distribution.

Every node has properties connected to it. These properties define the behavior of the
nodes. One disadvantage of GeNle is that it only has discrete probability distributions
and just discrete amount of decisions.

A decision node has a set of actions defined. The input nodes are for the calculations of
returns for each combination of states of the input nodes. Chance nodes are defined by
states and a probability for each state and each combination of states of the input
nodes. So it has several dimensions, one for each input node, and one for the output
state to be filled. An example for a chance node is “Private Information”, which repre-
sents an internal state with two possible values: “stable” or “unstable”, each combined
with a probability of occurrence. The “Defender Strategy” node is a model of imperfect
information. It uses the choice of the defender as input and then gives the correct in-
formation to the attacker with a certain probability, otherwise wrong information. The
attacked system is modeled as a chance node, too. It has to states “broke” and “hold”
and two input nodes connected with an arc. Therefore it has a three dimensional grid
filled with the associated probabilities. It describes the probability given the two choices
of attacker and defender, with which the system fails. The value node has no state it-
self. It describes the outcome for a decision depending on different input nodes. In our

22

SECONOMICS

»

example “Value for Defender” is a value node. It receives to arcs from defender and
system, which represent the decision of the defender and the status of the system. With
respect to this, it defines a discrete outcome.

d ™
= GeNle - [Example Model: main model] - E@g
:] File Edit View Tools Metwork Node Learning Layout Window Help = [[&f ®
== = #wlhLooomeD f A% 2|F ~|myREEHe: -~

|Avizl ~lg ~| B 7 E=E (LA =

Tree View x

E‘Q’g MNetworkl (Example Model)

(23 Private Information
...l Defender Private Information Defender Strategy
-4 Value for Defender [7] Kl |

D) System
> Defender Strategy

[Attacker el
B N

.4 Value for Attacker ¥
Defender Attacker
m = m ‘
I Value for Defender Value for Attacker
[7] [7]

Mo evidence EH Mo targets
——

Figure 4: Defender-Attacker Example visualized with GeNle Modeler

In Figure 4, the example of the DA model described above is visualized with the GeNle
modeler. GeNle has some disadvantages in order to simulate defend-attack models,
which shall be improved in our tool. First of all, it can model different outcome values
and different decisions but tries to optimize the average value. Therefore it cannot
manage two different opponents with adverse reward value functions. Therefore, it is
impossible to model Defend-Attack models. The second disadvantage is the limitation to
discrete sets of actions and probability functions. So it is impossible to model investment
decisions.

2.3.2 Inability of GeNle to solve the Sequential Defend-Attack problem

In game-theoretical analysis, a common assumption is that the Defender knows how the
Attacker will solve his problem, i.e., she accurately knows the Attacker’s true p,and ua.
However, in the ARA analysis this common knowledge assumption is weakened: the De-
fender does not actually know (pa, ua) in the Sequential Defender-Attacker problem dis-
played in Figure 5.

23

SECONOMICS

Y 2D

v i

:) : v}
\/J\/ O
v b

2 e ot

&) D<u,{ 1

(a) Influence diagram (b) Gametree(m=n=2) o

Figure 5: The Sequential Defend-Attack model

We thus consider the Defender’s problem as a standard decision analysis problem: the
Defender’s influence diagram in Figure 6, no longer has the hexagonal utility node with
the Attacker’s information and his decision node is perceived as random variable.

Y Yp
a1 /’g\ i r
; NSaA N | !
4 N P!
_________________________________ . \by Yo
:] ¥ é\‘<:: i
: — N N_t
o ——(D)—(a B
/4 L
' SO ENE
N M. o
d i
N Y @ !
ar /N Lo
O/ N i !
(a) Influence diagram (b) Decision tree (m=n=2)

Figure 6: The Defender’s decision problem

Similarly, her decision tree denotes uncertainty about the Attacker’s decision by replac-
ing [A] with (® and including a reference only to the Defender’s utility function. Howev-
er, as we shall see, she may have beliefs about (pa, ua), which will be relevant in our
analysis. This problem is implemented in the GeNle model Seq D A prob D.xdsl, see
Figure 7.

24

In this particular example, we have introduced the following data from p. 19 of deliver-

ol

SECONOMICS

» GeNle - [Seq_D_A_prob_D.xdsl: main model]

®) Ele Edt Vew JTools MNetwork Node Leaming Layout Window Help

DEE & ARPoOOOCm®O /A TR F - "aEBix -
= JfF <z EEA S LA = '
B a2 (520 A prob 0

O Attacker

B Defender

& Defender's utiity

O Success .\
' \

Defender’s utit
ki

Figure 7: GeNle model for the Defender’s decision problem

able D5.1 - Basic Models for Security Risk Analysis into the nodes:

After

Her expected utilities up(d, s) into node “ ;)
Her estimated probabilities on the success of the attack p,(S|d, a) into node (s

Node (A) should contain the information about her estimated probabilities about
what attack will choose the Attacker once he has observed her defense p,(4 =
aj|d). In this case, and for illustration purposes, we have included the values in
Table 2 of deliverable D5.1 - Basic Models for Security Risk Analysis.

Updating (solving) the model, the estimated expected utilities 1),(d) will be
stored in the Results tab of the [2] node. We obtain the same results than in Table 3 of

deliverable D5.1 - Basic Models for Security Risk Analysis.

By observing the influence diagram, note that in order to solve her decision problem,
the Defender has already assessed pp(S|d, a) and up(d, S), but she also needs pp(A | d),
which is her assessment of the probability that the Attacker will choose attack a, after
observing that the Defender has chosen defense d. This assessment requires the Defend-
er to analyze the problem from the Attacker’s perspective, possibly as we describe.

First, the Defender must place herself in the Attacker’s shoes, and consider his decision

problem. Figure 8 represents the Attacker’s problem, as seen by the Defender.

25

Pl

SECONOMICS

(@) Influence diagram (b) Decision tree (m=n=2)

Figure 8: The Defender’s analysis of the Attacker’s problem

In this model, the Attacker observes the (random for him) defense of the Defender, and
chooses an attack. To solve this problem, the Defender can proceed as follows:
e She elicits a distribution F ~ (Ua, Pa).
e This induces a probability distribution
Wa(d,a) =) Ua(a,s)Pa(S|d, a)
" S—— N — —
SES (/_\‘
W ®

This random expected utility is, for each (d, a), a weighted average of the random
utilities Ua(a, s) over all possible outcomes of the attacks s € S,p,(S|d, a).

e Then, the Defender can estimate probabilities p,(A|d) through MC as

#{a=argmax,_, 5(d,x)}
N ;

po(A =a|d) =
N —

Vae A,

where {Uf}Ho, ~ Vg4

We could try to solve this problem with GeNle, as shown in Figure 9, proceeding as fol-
lows:

« po(d) should be placed on node ©;
e Ua(a, s) should be placed on node ;

e Pa(S|d, a) should be placed on node ®;

and (if we were able to solve the problem) the estimated probabilities p,(A|d) (un-
known for her) would be stored in the Results tab within the [A] node. But the problem

26

P4

SECONOMICS

here is that GeNle is not able to handle continuous probability distributions (as Ua(a, S)
and Pa(S | d, a)). So this problem should be solved with a different tool e.g. OpenBUGS
or Matlab.

= GeNle - [Seq_D_A_prob_A_seen_by_D.xdsl: main model]
®] Be Edk View Iooks Network Node Leaming Layout Window Help

Ded & #hLPoocme@D /A F 2 F- "R @
[Aial ~f =Bz EEEDO-L-A-= :
Tree View 2
= & Network2 (Seq_D_A_prob_A
B Attacker
& Attacker's utiity
O Defender
O Success

< Aftacker's MRE >

Figure 9: GeNle model for the Defender’s analysis of the Attacker’s problem

Provided we have been able to solve the Attacker’s problem with any of these tools
(i.e., once with p,(A|d)), we could go back to the model in Figure 6, and try to solve
the Defender’s problem with GeNle, see Figure 7. Her expected utilities at node (A) in
Figure 6 for each (d,a) € D X A are

/o(d,a)= 3 up(d, $)po(SId,).

ses

For each (d,a),yp(d,a) is a weighted average of the utilities u,(d,s) over all possible
outcomes of the attacks s € S,pp(S|d, a). Then, her estimated expected utilities at node

(D] for each d € D are
n

Op(d) =) Un(d, &) Po(A = a|d).

J=1

For each d,{,(d) is a weighted average of the expected utilities Y, (d, a) over the esti-
mated probabilities p,(A = a;|d). They will be stored, as previously mentioned, in the
Results tab in the [D] node of the GeNle in Figure 7.

Finally, her optimal decision would be d* = argmax,cpP,(d). The above discussion illus-
trates the inability of GeNle to handle even the simple ARA models.

2.4 Bugs
This chapter first we want to describe the Bugs tool, which is another tool with good
ideas, and then explain why it is inappropriate for this project to use.

27

sl

SECONOMICS

2.4.1 Description

Bugs [14] is a statistical software for modeling Bayesian inference using the Gibbs Sam-
pling algorithm. The user can define an almost arbitrarily complex statistical model.
Therefore it is only necessary to declare the dependencies between related variables.
The great advantage of applying the Gibbs Sampling algorithm is in fact the possibility to
compute the combined distribution of a statistical model, even when only the separate
distributions of the variables are known.

There are two versions of Bugs originated from the same source: OpenBugs and WinBugs.
WinBugs is an established and stable version, but it will not be further developed. On
the other hand, OpenBugs is open source software, which is at least as reliable as Win-
Bugs in the newest versions, and the continuing development work is still in progress. A
typical example visualized with OpenBugs is visualized in Figure 10.

One could possibly deduce a strategy to implement some part of the template ARA mod-
els within OpenBugs/WinBugs. Indeed, we could use it to create the Attacker problem
with uncertainty in the assessments and use a simulation strategy to obtain the distribu-
tion over Attacker policies. We would then need to externally develop the Defender
model with the produced distribution as key input. This would be quite cumbersome, as
an approach to general security risk models.

Figure 10: Snapshot of OpenBugs example

2.4.2 Inability of OpenBUGS to solve the SEQ-DA problem
In order to solve the Attacker’s decision problem, we need to implement the first step

of the algorithm on p. 20 of deliverable D5.1 - Basic Models for Security Risk Analysis for
each possible defense.

28

SECONOMICS

Simulation for the Sequential Defend-Attack problem
1. Estimate pp(aj|di) for each d;
For i=1tom
For k=1toN
For j=1ton
Draw (uf,pk) ~ (Uy,Py) =F for all possible outcomes S €S
Compute v7(ds,aj) = Y ..sPi(s|di,a;) uf(a, s)
Compute a® = argmax, . 4 e,"n‘{di'x)
Po(a*|ds) = po(a”[ds) + 1
Po(aj|ds) = Po(aj|d;)/N, Vj

The layout of the model in OpenBUGS would be as shown in Figure 11.

&4 0penbUGS
File Ecit Attvibute: Teok [rfo Model [rference Doodle Map Wirdow Examples Manusl: Help

B OpenBUGS_Seq_D_A_prob_A_seen_by D

<psm PS'AZ) psms)

Figure 11: OpenBUGS model for the Defender’ decision problem

On the upper level of the model we should have to specify the parameters of the in-
volved distributions, as can be seen on Table 1 of deliverable D5.1 - Basic Models for Se-
curity Risk Analysis. Then, after sampling from the distributions of the probabilities
Pa(s|d, a) and the utilities Ua(a, s), we would obtain the expected utilities ¥,(d, a), from
which we could finally estimate the optimal attack from the point of view of the Attack-
er.

The drawback is that, even for this small problem, the specification of the model be-
comes cumbersome in OpenBUGS, and there is a lack of flexibility in the definition of
the distributions and of the quantities involved. Besides, a different model should be de-
fined for each possible defense, with the additional limitation that the models are not
easy connectable in OpenBUGS. Hence, OpenBUGS is not an adequate tool to deal with
our ARA analysis.

29

-

SECONOMICS

2.5 Seclnvest

Seclnvest is a security investment tool that emulates the presence of a security expert.
The tool is described in detail in [3], [4] and [5]. It takes decision makers through the
evaluation of investment alternatives in a step-by-step manner, without requiring the
decision maker to be an expert. Seclnvest does this with the help of a number of
knowledge and experience repositories, both can be company confidential and publicly
available. The public repositories are made up of information from sources like open
vulnerability websites and risk analysis report providers (e.g., NIST and ENISA). The re-
positories also incorporate vendor-specific exploit and vulnerability information. To cap-
ture regional aspects like country-specific threat situations, that may affect the invest-
ment initiative, Seclnvest includes an additional regional risk repository.

Seclnvest uses a trust-based information aggregation technique to combine the disparate
information and help select and link information of relevance for a particular investment
decision. The tool also takes into account, whether the decision maker is risk-averse,
risk-taking or in-between, and lets the decision maker actively take part in the invest-
ment alternative evaluation process.

The development of this new process of decision making becomes necessary, although
there are a variety of already existing economic approaches like Return on Security In-
vestment (RoSI), Net Present Value (NPV) and Annualized Loss Expectancy (ALE) models.
Each of these approaches uses a specific form of cost-benefit analysis. As these compo-
nents are often too difficult to be estimated exactly, it is in practice rarely achievable
to set up a budget decision making process that rests solely on results of these purely ra-
tional and economic models. Therefore, some more categories of affecting parameters
have been integrated into the decision making process.

There are four categories of variables involved in evaluating security investments alter-
natives, based on fitness score: (a) Cost variables, (b) Risk variables, (c) Context varia-
bles, and (d) Benefit variables. In addition, there are priority-variables modeled as utili-
ty functions across the other variable sets. The cost category includes the variables: (al)
Monetary cost, (a2) Billing model, and (a3) Cost coverage. In Seclnvest these three vari-
ables are defined in terms of a qualitative relational scale and all are ranked internally
and in respect to the other cost variables using conditional probability expressions. The
same applies to the risk variables: (b1l) New risks, (b2) Compliance, and (b3) Liability;
the Context variables: (cl) Time-to-market (TTM), (c2) B2B trust (hereafter called
Trust), (c3) Cultural issues; and the Benefit variables: (d1) Cost savings, and (d2) Control
retained. The risk and context variables are used to compare alternatives from a securi-
ty perspective, while the cost and benefit variables hold the financial and business con-
straints.

The Seclnvest decision engine is implemented as a Bayesian Belief Network (BBN) topol-
ogy. BBN is a powerful tool for reasoning under uncertainty and has shown effective for
both assessing the safety and the security of systems.

Seclnvest merely focuses on security evaluation and cost-benefit analysis and does not

support a policy-driven security evaluation. Furthermore, Seclnvest supports private and
public medium sized businesses, and does not target critical infrastructure and national

30

.

SECONOMICS

security. Figure 12 shows a Bayesian Belief Network topology of the Seclnvest decision
engine.

Financial perspective Security perspective

{ Benefit \ (Risk \

. N / e s

(Cost \ —— (Context
\. Y, / \ y,

Criteria

Investment Fitness Score

Figure 12: Bayesian Belief Network topology of the Seclnvest decision engine

2.6 SeCMER

The SeCMER tool, described in [2], is specialized on the qualitative management of
structured security requirements. This becomes necessary as modern software systems
are increasingly complex, and the environments where they operate are increasingly dy-
namic. Security requirements change continuously, making the traceability of require-
ments difficult and monitoring of requirements unreliable. Changing requirements can
also have impact on security properties of a system. Some older properties can become
invalid, or new properties have to be satisfied, due to system changes. Therefore, it is
necessary to apply analysis techniques that check the satisfaction of requirements in a
system that has been changed.

SeCMER supports the automatic detection of changes in requirements and violation of
security properties. The tool also identifies new security properties, due to old proper-
ties being affected by evolutions of the system. SeCMER provides a methodology that
supports a conceptual model of security requirements, with a process for the elicitation
of security goals, a light-weighted approach to formalizing, and reasoning about chang-
ing security goals, and an approach based on argumentation, and model transformation
to reason about the impact of change. The tool’s output either ensures that the evolu-
tion of a system did not affect any security properties, or it offers modified security
properties that have to be applied by the changed system.

For modeling requirement changes, SeCMER produces two models: The before model and
the after model. These models link the empirical security knowledge such as information
about assets, security goals and threats to the stakeholders’ security goals. Therefore,
concepts from Problem Frames (PF) and SI* requirements technology are combined with
traditional security concepts, such as security goal and asset. SI* is an extension of the I*
framework that provides the ability to model a project’s stakeholders, their goals and
their social inter-dependencies, whereas PF analyzes the physical domains acting in the
problem’s context. There is certain similarity between problem concepts modeled with

31

_ .
- "’:::":\G‘-' :'.\- "‘q_‘f;'Q
\ \

SECONOMICS

SI* and PF, especially within the notion of, for example, biddable domain on the one
hand, and the actors on the other hand.

Merging SI* and PF produces a quite powerful security goals engineering approach, as an
SI* analysis can identify attacker’s intentions through the social interactions of the in-
volved participants. PF instead allows identifying valuable assets that lie in the system
boundary through explicit traceability of shared phenomena among physical domains and
the machine itself. The concept of SeCMER is visualized in the model shown in Figure 13.

To detect changes affecting security properties in a system, the SeCMER methodology
makes use of security principles, which are specified by an extensible set of security
patterns. Security patterns define situations that cause violation of a security property
in the system. Whenever the application finds one of these patterns in the model, it can
automatically be reported. It is also possible to apply pre-defined default actions auto-
matically when a security property is violated, or at least to suggest some quick fix solu-
tions when there is no automatic remedy defined.

In the following, some default security patterns and properties are introduced. The main
security patterns, the SeCMER methodology makes use of, are trust, access and need.

5 Entity
3557/
H Goal futiits LI Action
carries out
- Actor
L Resource
protects provides
£ Requirement L SecurityGoal
src trg
£ Dependency
dependum

I Trusts L Delegates

Figure 13: Conceptual model of SeCMER

Trust and access are patterns, which can also be modeled and interpreted transitively.
In the patterns, only assets that are protected by security goals are considered. When an
actor performs an action that does not violate any system properties, there is no need
for further investigations. If an actor gets access to an asset without trust, then the
“trusted path property” is violated. If an actor gets access to an asset without need,
then the “least privilege property” is violated.

Security analysis in SeCMER can also be driven argumentation based. As a result of
changes in the requirements model, the developers check whether there are new securi-
ty properties to be added or to be removed. For argumentation based analysis, the ar-
gumentation meta-model is deployed. This is shown in Figure 14.

32

.

grounds
warrants o= &
to E] Argument -
0.1
= from 0.1
] Link 0.1
= 0.* 0.1
0.* nodes
links
H ArgumentDiagram 0,
origin
£l Rebuts rebuttal

= Mitigates
Figure 14: SeCMER arguments meta-model

An argument diagram consists of multiple arguments linked together. Each of these ar-
guments has exactly one claim. It also consists of facts and warrants. A claim is a predi-
cate with a truth value that is established by an argument. A fact is a true proposition,
represented by an argument that only contains a claim. A warrant links the facts of an
argument to its claim. As facts and warrants can themselves also be arguments, argu-
ments can be nested. When an argument is introduced to the model, it is possible to in-
dicate the time when it is introduced by means of an optional timestamp.

Argumentations should not be re-executed after every small change in the requirements
model. Whenever some arguments may become invalidated by a system change, then
the argument is marked for re-examination. This relies on the traceability that can be
established between the argument and the requirement model.

2.7 Matlab Overview

The Matlab programming language offers an excellent environment for developing mod-
els that mix economic models of interacting agents (distributed or representative) with
mathematically consistent models of the architecture of a system with security require-
ments.

The Matlab programming language has been developed over a number of years to serve
as a means for accessing computationally intensive tasks written in languages such as C,
C++, VBA, Java and Fortran.

From the Matlab Product Description [18] the key features are
e High-level language for technical computing
e Development environment for managing code, files, and data
¢ Interactive tools for iterative exploration, design, and problem solving
e Mathematical functions for linear algebra, statistics, Fourier analysis, filtering,
optimization, and numerical integration
2-D and 3-D graphics functions for visualizing data
e Tools for building custom graphical user interfaces

33

SECONOMICS

e Functions for integrating Matlab based algorithms with external applications and
languages, such as C, C++, Fortran, Java, COM, and Microsoft Excel.

The usefulness of the language is in serving as an integrator for models developed in the
languages listed in the key features. For deployment purposes the Matlab programming
language offers three very helpful major features.

1. Proof of concept and robustness checks.
2. Development of graphical user interfaces.
3. Compilation and deployment.

The first feature is reviewed in deliverable D6.1. Most mathematical formulations can be
described by meta-code and in most circumstances the expressiveness of basic Matlab
code replicates the meta-code with only minor adjustments.

The second feature is useful in deployment and is related to future work to be found in
Deliverable D8.4. Graphical User Interfaces (GUIs) allow for easy interaction with mod-
els, allowing users to change parameter configurations and run experiments for different
types of policy.

The third feature is very important for distribution of the policy modeling tool that the
SECONOMICS project will produce through WP8. The Matlab compiler allows the modeler
to build standalone executable applications that can then be installed on machines with
appropriate operating systems.

From the Matlab Compiler product description [19]:

“Matlab Compiler lets you share your Matlab application as an executable or a shared li-
brary. Executables and libraries created with the Matlab Compiler product use a runtime
engine called the Matlab Compiler Runtime (MCR). The MCR is provided with Matlab
Compiler for distribution with your application and can be deployed royalty-free.”

The features of Matlab Compiler will be discussed in detail in section 3.1.4.

2.8 Carisma

Carisma is a framework for compliance, risk and security analysis in models. This section
about the framework is based on [1]. Carisma is developed at Fraunhofer ISST and TU
Dortmund, and it has been used there successfully for a few years in several projects. It
is based on the Eclipse platform and therefore has an extendable open plugin-
architecture. Carisma is not bound to any specific model type, but can easily be extend-
ed to the support of any possible model type. For now, it supports the Eclipse Modeling
Framework (EMF), UML models and BPMN models. Furthermore, Carisma offers extension
points facilitating the contribution of functionality of other plugins to provide different
checks. Such a Carisma check is the implementation of checking a security property. A
check can also contain miscellaneous help functionalities. A Carisma analysis is a set of
Carisma checks that are applied to a model in a pre-defined order. As Carisma is provid-
ed as an open plugin-architecture, additional analysis routines can be integrated into

34

/1

SECONOMICS

the framework easily. Compared to other tools, Carisma supports more types of models
and offers a broader range of analyses.

Figure 15: The user interface of Carisma

It is important to mention, that it is also possible to analyze only the evolution of a
model that has been changed. So no complete re-verification is necessary after a model
has been re-generated. To perform the analysis of a model in evolution, it is necessary
to compute the difference between the original and the changed model. This difference
is called the delta model.

Figure 15 shows the user interface of Carisma. It provides different views to create and
execute analyses, and to display the corresponding results. On the top left side in the
Analysis Editor, the user has to choose a model that has to be analyzed, and also the
checks that are supposed to be applied to the model in the analysis. It is possible that a
check requires certain parameters for its execution. These must be either primitive data
types such as String, Integer, Float or Boolean or can also be files or folders. Executing
the analysis by clicking the Run button initiates that Carisma loads the specified model
and triggers all checks contained in the selected analysis routines. The results are shown
in the Analysis Result View at the bottom of the figure. All performed checks are
grouped by the analyses they belong to. For each check a key like Success or Failure
shows the check result. Furthermore, detailed information about each check execution
is given. Afterwards, a full textual report, that contains all information about the analy-
sis, is generated. The information consists of detailed test results, but can also contain
descriptions of scenarios that would fulfill security requirements in case of an actual
check failure.

Certain checks support the analysis of evolution models that are changed. The process of
this analysis is visualized by the pipeline in Figure 16. The steps always have to be pro-
cessed in the order that is given there. As the first step, the changes in a model have to
be identified. This can either be done by computing the differences - which will be

35

P4

SECONOMICS

called the delta model - or by manual user-entered specifications of all changes. The
second step of the analysis is the computation of sets of all possible delta models from
the given changes. When one or more security requirements are violated by the evolu-
tion, all partial applications of changes in the model are analyzed. This is done with the
help of the sets that have been computed before. In the next step, the security checks
are performed actually either on the delta models, or the modified model itself. All val-
id delta models can be stored afterwards.

Modify model(s)

(3b)
—tv. Ty
Identify evolution] Compute deltas Perform checks Export model(s)
(1) (2) 3 (3a) (4)

Figure 16: Evolution analysis pipeline

The tool architecture of Carisma is visualized in Figure 17. Carisma is designed as an
open plugin architecture that can easily be extended. It is available as both RCP
standalone application and also integrated into Eclipse. Therefore, the Carisma tool is
divided into several Eclipse features, which can be installed altogether, but also sepa-
rately. The framework and the core components of Carisma are independent from the
model type that has to be processed. On the other hand, Carisma checks are mostly
model type specific. For example, checks using UMLsec stereotypes can only be applied
to UML models. But the realization of model type independent checks is also possible.
The model processed in a check or analysis is accessed via the Eclipse Modeling Frame-
work (EMF).

Metamodel extensionfg .
(e.g. UMLsec profile) CARISMA Check

e Y

EMF-based
metamodel Evolution Support
(e.g. for UML 2.x)

v Y

Existing EMF-based
metamodel (optional) CARiSMA Core
(e.g. Eclipse UML2 Plugin)

Eclipse + EMF

Figure 17: Carisma Tool Architecture

For integrating new checks into Carisma, there are two things necessary: First, meta-
information about the check, such as name, identifier and supported model types have

36

P d

SECONOMICS

to be declared. As the second step, the check itself has to be realized. Therefore, the
CarismaCheck interface has to be implemented. The central operation is called “per-
form” and contains the actual model analysis of a check. Its return value must be a
Boolean, which indicates whether the check was executed successful, or resulted in fail-
ure. As a help feature, Carisma also offers a wizard that supports the contribution of
new checks by creating a template-plugin project and necessary meta-information.

37

.

SECONOMICS

3 Techniques and possibilities of the tool platform

In the following paragraphs, some important techniques that will be used in the imple-
mentation of the toolbox are described. The evaluation of different techniques to gain
access from Java to Matlab is based on [6].

3.1 Matlab Java connection

The ability to evaluate Matlab functions, models and simulations from a Java environ-
ment are essential for an integrating framework, which has several possibilities to visu-
alize and design editors for an easy usability of the analytic models developed in WP5
and WP6. In principle, there are two fundamentally different options. The first one is
that the integration platform can run and remote control a Matlab session, whereas the
second alternative is that the code can be transformed in Java code. The first method
can be realized with the help of the Java Matlab Interface (abbreviated as JMI) and the
Java remote method invocation RMI. A tool which combines them, called “matlabcon-
trol””, was found in [6]. The second method makes use of the Matlab Builder JA. It “com-
piles” the Matlab code to Java executive code which can directly be called from Java
but needs to have a runtime environment installed. The two methods will be now re-
viewed in more detail.

3.1.1 JMmI

The Java package com.mathworks. jmi is provided by Mathworks who are the develop-
ers of Matlab to JAVA. With the help of this package, a Matlab session can be remote
controlled from a Java program. There are different classes and methods included in the
package that allow the control of the session. The central class, which is the most im-
portant one for the developer, is the Matlab class. Official documentations on this
package do not exist, but help can be accessed via the Matlab command line prompt for
information about the methods of the Matlab class. The command methods
com.mathworks.jmi.Matlab provides a list of names of all methods contained in the
class. For obtaining further information on the methods, the command methodview
com.mathworks.jmi can be entered in the Matlab command line. Then, for each
method, the return value, the required arguments and possible exceptions are specified.
The most important methods are mtEval and mtFeval. The method mtEval receives a
string as a parameter that is sent directly to Matlab and evaluated there. The string and
the result of the analysis are displayed in the Matlab console, as if they had been typed
in there. With the method mtFeval the functions are passed separately with name and
parameters to Matlab: mtFeval (name, paraml, param2, ...). These functions
can also return values back to Java. The package com.mathworks. jmi only serves to
interact between Java and Matlab with an existing connection between Java and the
Matlab session. To prepare such a connection more packages are needed.

3.1.2 RMI - Remote Method Invocation

The RMI package is an interface that allows connections between different virtual Java
machines running different Java-based applications. Furthermore, RMI defines its own
client-server-based communication protocol with which these connections are realized.
The Java Virtual Machine running Matlab corresponds to the server, to which the client
virtual machine running the framework connects. First, an interface is created, which
defines the methods offered by the server. This interface is then implemented by the

38

1 il
pr s
- >
/ : ﬁ:___p)-"

SECONOMICS

W

server. Objects and methods provided by the server have to be registered in a RMI regis-
try. The client can then access these objects and methods with the help of the registra-
tion name.

3.1.3 Matlabcontrol

Matlabcontrol is a well-documented [8] package that allows a connection from Java to
Matlab, using JMI and RMI. This package is an open source project under BSD license,
which is not directly supported by Mathworks. The program code, as well as a simple ex-
ample application, is available online [8]. First, MatlabProxyFactory is used to cre-
ate a proxy server for Matlab, which starts a new session. With the method eval com-
mands can be sent to this proxy.

This method is exactly the same as mtEval from the JMI package. The input string is
evaluated in Matlab and the result is returned to Java. The counterpart to the JMI meth-
od mtFeval in Matlabcontrol is feval. With it, the name of the Matlab function and
the corresponding arguments are passed separately. In addition, with Matlabcontrol the
values of variables can be set and read. The following example is from the online
walkthrough of Matlabcontrol taken from [8].

The method setvariable ("a", 5) creates a new variable in Matlab and assigns a
value of 5 to it. With getvariable ("a") the contents of the variable can be re-
trieved from Matlab. It must be noted that return values of Matlab are always returned
in form of arrays, even if they contain only one element. Calling Object result =
proxy.getVariable ("a") thus provides not the desired result. For the correct re-
sult a type conversion has to be done. The corresponding call for this is double re-
sult = ((double []) proxy.getVariable ("a")) [0]. Below the relationship
between the different components in the Java-Matlab-remote control is illustrated
schematically in Figure 18.

MI ' ; RMI

Java ' | | Matlab

matlabcontrol

Figure 18: Remote control a Matlab session with “matlabcontrol”

3.1.4 Matlab Builder

Matlab Builder is a tool included in Matlab that offers the ability to use Matlab code in
other applications outside Matlab. Matlab Builder JA covers Matlab Code with additional
Java code and embeds it into Java classes. These classes can be accessed via pre-
defined methods whereas the Matlab code itself is encrypted. The advantage of using

39

P4

SECONOMICS

Matlab Builder JA is that no Matlab distribution is needed to execute Matlab functions.
Java Packages created by Matlab Builder can be executed on every machine - only the
Matlab Compiler Runtime has to be installed to use the functions. This runtime can be
obtained without charge on the Mathworks website.

The Matlab Compiler Runtime also includes a graphical output window for visualizing
graph plots, but there the functionality for handling these plots is limited to a certain
degree.

To use the package created by the Builder in a Java application, it must be imported
like any other Java package. Furthermore, an additional Builder Java package that
comes along with Matlab has to be integrated into the Java application.

exported
Java Matlab Matlab Compiler Runtime

functions |

Figure 19: Execution of exported functions in Matlab Compiler Runtime

Figure 19 visualizes that the exported Matlab functions integrated into the Java envi-
ronment call the Matlab Compiler Runtime. The function execution is processed inside
the runtime. There is no possibility to gain direct access to anything that is processed in
the runtime. Only the results of the computation can be handled in Java, after the exe-
cution has finished. A detailed instruction manual for Matlab Builder JA can be found in

[9].

3.2 Eclipse

Eclipse is an open source development tool for various types of software. Being an inte-
grated development environment (IDE) only for Java language in the early years, the use
of Eclipse in other fields of action has increased more and more because of its extendi-
bility. Eclipse itself is based upon Java technology, since release 3.0 on the OSGi frame-
work called Equinox, which makes it available for multi-platform use - Eclipse runs on
Windows as well as on Linux systems.

Eclipse is also almost completely based on plugin architecture. Only a little part is pro-
vided as the core, which can be extended to a high degree as there are a lot of plugins
for Eclipse, both open source and commercially provided. It is easy to embed any Java
application into the Eclipse environment - everything that runs in Java can also be in-
cluded in Eclipse.

Because of its free availability, Eclipse is a widely spread development environment in
computer science and so offers a bunch of substantial manuals and help documents,
which abundantly ease the first steps inside Eclipse for new beginners. A lot of basic
tools, such as different types of editors, are already available as plugins for Eclipse, but
if this is not enough, it is also easy to create new tools, for example by means of the
Graphiti toolkit, which will be described in detail in sections 3.4.

40

-

SECONOMICS

The Carisma tool is also implemented in Eclipse, which makes it a regularly-used envi-
ronment and so there is a large expertise among the workgroup members at Fraunhofer
ISST.

The layout of the Eclipse window is fully customizable; any part of any view can be
moved and docked almost arbitrarily and can be aligned to every user’s individual re-
quirements.

3.3 Plugin Interface

Plugins are self-contained software components which can be created in Java. Eclipse
itself is built up from a plugin-architecture. The main IDE can be extended to additional
menus and editors by the use of plugins.

A plugin is a set of code which is put in a modular, extendable and distributable pack-
age. Modular means in this case, that some of the code is already provided. Moreover, it
is specified whether there are dependencies to other packages or plugins, and also
which packages are from the newly created plugin. A Java application can be composed
of multiple plugins which can be added, replaced or deleted to modify its functionali-
ties.

A plugin is provided extendable, as so-called extension points can be used by other
plugins to extend them to further functionalities. Of course, it is also possible to define
own extension points, so that other plugins can extend the own features. Extension
points are typically defined as a combination of XML and Java interfaces. A plugin using
an extension point has to stick to a pre-defined structure exactly. The definition of an
extension point is some kind of agreement between the two components.

The distribution of plugins is realized by an export to a folder or a jar file. These data
can be used by other applications instantly. Moreover, there is a possibility to merge
multiple plugins to a so-called feature. These can be installed to the application
entirely.

To add a new extension point to a plugin, there are a few steps necessary. At first, the
extension point has to be defined in the manifest file. The definition’s content states
the name of the extension point, its unique ID which the extension point can be
referenced at by other plugins, and its internal structure that has to be inherited by
plugins. This structure consists of multiple so-called elements. These are defined by a
name and a data type. When a plugin is supposed to extend any functionalitiy, at least
one element of the type Java must exist. This element describes an interface which is
implemented by the plugin. The interface’s name is also registered in the element. By
the use of these information from the manifest file, the structure of the extension point
can be identified, and the user gets to know which classes have to be implemented to
extend the target application.

To use plugins that extend one’s own application the application itself is responsible for
that. In an Eclipse registry file, all plugins which implement the new plugin’s own
interfaces can be found. These can be then instantiated and method calls are possible.
When writing a new plugin the first step is to create a manifest file in this new plugin.
Therein, the user adds information about the extension point the plugin makes use of.
Elements can be attached to these extension points, whereas the elements contain
specific classes which implement the interface of the element from the target
application. Figure 20 shows this relation in a simplified way.

41

i ’
R
f:e;:&’} T

SECONOMICS

| |
Implementa-
Interface tion of Inter-
face
Target .
application FLIGIn
Manifest mapping Manifest

Figure 20: Relations between concrete classes and the Eclipse Plugin interface

3.4 Creation of graphical editors

One part of the Eclipse Framework is the Eclipse Modeling Framework (EMF). It is a
large-sized package of different tool packages. One major part of EMF is the Graphiti
package. It is used to build graphical editors to create, edit and visualize models, like
BPMN or UML-diagrams. In this project, Graphiti provides a Java API to create visual edi-
tors for modeling influence diagrams or decision trees. With this package, it is easy to
build such visual modeling tools. Using a visual editor, it is easy to create models within
a graphical user interface. Such created models can then be post processed and then
pushed to the Matlab engine to be processed by the mathematical toolboxes there. The
result can be returned to the framework and then visualized in the visual model. The
Graphiti package uses domain-models to know the structure of the creatable models.
These domain-models are described in a special language introduced in the Eclipse
Framework called ECore.

To understand the context of Graphiti it is necessary to get some background infor-
mation. This includes the Eclipse Modeling Framework (EMF), which is described in sec-
tion 3.4.1, and the ECore meta-model, described in 3.4.2.

3.4.1 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is an open source project of the Eclipse open
source community. It is, for instance, used to create Java code based on a structured
model. EMF uses the XML Metadata Interchange format (XMI) to define these models.
The domain-model of EMF precisely defines the various components a specific instance
of the model may consist of. These components may be, for example, classes, data
types, class attributes, or associations between individual elements of the model. Since
the purpose of this framework is to generate Java code, the scope of the modeling ca-
pabilities is not as comprehensive as e.g. UML. But the previously discussed components
are sufficient in most cases. There are several ways to create such a model to produce
code using the EMF code generator therefrom. The most basic method is to define the
model by hand in an XML or text editor, where care must be taken on the precise struc-
ture of the document. Another option is to use existing modeling tools, such as Rational

42

P4

SECONOMICS

Rose, which also uses the XMI format to define their charts. Additionally, there is the
possibility of providing ad hoc written Java interfaces to be provided with modeling
properties. If these interfaces are annotated on java classes, the EMF can evaluate this
and produce the missing implementations.

The generated code can then be extended with instance variables and methods by the
user. In addition to the interfaces and implementations, the code generator of EMF cre-
ates getter and setter methods and ensures the validity of two-way references. For ex-
ample, the two classes "book" and "Author" refer to each other, so the EMF makes sure,
that if an author is assigned to a book by the user the book is assigned to the author,
too.

In addition to model interfaces and implementations, two more interfaces and imple-
mentations are generated: Factory and package. Factory contains methods to create in-
stances of the domain-model. Therefore, a create method for every class in the domain-
model is provided. Package supports static data about the domain-model. Therein, ac-
cess to static integer variables is possible, as well as access to methods which return the
basic data types of the EMF meta-model, which have been used for the domain-model.
This is, for instance, for the class “book™ the type “EClass”. This information is needed
to create specific instances of the domain-model. The generated classes use this infor-
mation to identify objects in the domain-model.

3.4.2 ECore meta-model

ECore is a meta-model which the Eclipse Modeling Framework is built upon, thus ECore
represents the core of this framework. The meta-model is also a toolbox for EMF, as the
user can work with its pre-defined elements when creating new domain-models. The
most important entities therein are classes (EClass), attributes (EAttribute), references
(EReference) and data types (EDataType).

NamedElement NamedElement NamedElement
ETypedElement +eType EClassifier EPackage
.
lowerBound: int 0.1 0.x
upperBound: int

% +eSubpackages | I
/ AN 0.x

EStructuralFeature EClass EDataType

derived: boolean 0. -

f K |_ +eSuperTypes [ﬁ
0.*

EAttribute EReference EEnum

NamedElement
EEnumlLiteral

containment: boolean +eOpposite p—
0.1

Figure 21: Scheme of ECore meta-model

43

-

SECONOMICS

The basic structure of the ECore meta-model is set up hierarchically and will be
described below. On the top level there is a root object, which represents the whole
model. There are packages attached as children to the root object. On the next level
there are classes, whereas the bottom level contains attributes that are assigned to
these classes. Figure 21 shows a simplified scheme of the ECore meta-model.

3.4.3 Graphiti Framework

The basis for any editor developed with the Graphiti framework is an existing domain
model. This contains the data which has to be visualized. These domain models can ei-
ther be models from the Eclipse Modeling Framework (EMF) such as the previously intro-
duced ECore meta-model, but also domain-models from any other Java based objects, or
meta-models in business process management (BPM) notation.

Models created with a Graphiti based editor always consist of two different types of el-
ements: Objects and references. ECore already provides a meta-model with generic
classes for these elements: EClass (for objects) and EReference (for references). For a
newly instantiated domain model these classes can be subclassed several times, depend-
ing on how many different types of nodes and edges have to be provided in the new do-
main-model.

In the context of Graphiti the Link Model and the Pictogram Model are also important.
The Pictogram Model contains all information about the graphical representation of a di-
agram created with a Graphiti based editor. As a consequence of this, some data might
be redundant, as they are available both in the Domain Model and the Pictogram Model
(e.g. the name of a class in an ECore model). This can sometimes cause synchronization
problems. For this case, Graphiti offers a mechanism that visualizes these problems.
These can be resolved manually by the user with an update feature.

Objects and references in the domain model have to provide the so-called features. Typ-
ical features are, for example, a create feature, to create elements in the domain-
model; an add feature, to add the graphical representation of the element to the mod-
el; a delete feature, to delete an element from the visualization; and a remove feature,
to remove an element from the model. These features have to be provided by the
Graphiti user. It is very important that a create feature also has to call an add feature,
to be able to link model and visualization with each other. This also applies to the re-
move feature, which must always contain a delete feature.

In Java code, features are implemented as Java classes extending applicable super clas-
ses. If desired, these classes can be extended to specific functionalities. It is also possi-
ble to define constraints within the model, for example only to interdict the creation of
an edge between certain objects of a specific type. Therefore, it is necessary to provide
a feature which only permits the specified connections.

All the features in the domain-model have to be added to the Feature Provider of the
model. This central control class is used to call all the necessary features at any time.
The feature concept is illustrated in Figure 22.

For each instance of an EClass or EReference all the provided features can either be im-
plemented separately, or some features can be shared by two or more objects of the

44

P4

SECONOMICS

domain-model. This can be useful, when there are only little differences between these
objects, e.g. in their graphical representation.

/ Diagram Type Agent \

-
Add Create Delete
Feature Feature Feature
\

Figure 22: Feature concept of Graphiti

The graphical user interface of a Graphiti based model editor always includes a palette
which contains the objects of the domain-model. From these objects the user can create
specific models. To add a node object to an existing diagram in the editor, the user has
to choose the object in the palette and then drag a new rectangle in the draw area of
the diagram. Performing this action makes the Diagram Feature Provider class call the
create feature of the object. This creates a new instance of the object in the model,
adds its graphical representation to the diagram, and creates a link which contains the
relation between these objects from domain- and diagram model.

45

SECONOMICS

4 Design of tool platform

In the following sections, the design of the tool platform will be presented, and a proto-
type of the user interface can be seen. After that, it will be shown how different models
can be integrated.

4.1 Overview of the design

The toolbox integrates different separate parts. There are analysis models and support-
ing components like editors. The models are intended to be implemented as functions in
Matlab, and can be used in this toolbox then. For the integration, the tool platform Ca-
risma is used. This has already been used for many years at Fraunhofer ISST and TU
Dortmund, and is characterized by many interfaces and thus good expandability. Gener-
ally, the tool should receive input data from the case studies WPs 1-3 and parameters of
the models as input and generate analyses, graphs and reports from this data.

4.2 Design of the integrated Frontend

4.2.1 General

All Models will first be developed in Matlab and published as separate Matlab toolboxes.
Some visualization will be implemented as far as possible. Additionally, these toolboxes
can be integrated in one single platform built with Java. This enables the use of visual
editors to create graphical models usable with the Matlab toolboxes. For example, there
could be an editor for decision trees and influence diagrams. Additionally, this platform
could be able to display some graphs and diagrams (with the help of the Matlab plotter).

Integrated Framework

Analyses &
Graphs

Data :>
(from case studies) .
Visual Visual

Editar Models Strategies
Parameter >

¥ ¥

Matlab model Matlab model

Figure 23: Schematic structure of the toolbox

During an evaluation, the analysis is selected. This analysis can then be adjusted with
parameters and performed on the data provided to the tool. The Matlab implementa-
tions are previously compiled with the Matlab Builder JA, and can then be called with
the aid of the Matlab runtime, to evaluate the analysis getting the data finally back from
the runtime. For these calls no Matlab license is needed. Graphs and reports are then
displayed. Figure 23 visualizes all these processes schematically. Data from case studies
are provided to the tool, the model will be chosen, parameters are adjusted and with
the aid of visual editors, some visual models might be designed. This data will be trans-

46

/1

OMICS

e

<

SECON

ferred to Matlab and the specific methods are called and the results are calculated in
Matlab. Finally, the result is transferred back and displayed as tables, graphs and re-
ports.

4.2.2 Integration in detail

We explain now in detail the structure of the framework, presented in Figure 24. From
the case studies, empirical data is provided as external data to the tool box. As men-
tioned in section 3.3, the framework is able to be extended with additional plugins. The
models themselves are provided as Matlab toolboxes. Each analysis will be displayed in
an analysis selector, which is a list box icon showing all available analyses connected
with a description of the analysis and its purpose. The analysis selector will provide two
different interfaces to integrate a tool.

e The easiest one is to place an analysis description file into the specific toolbox di-
rectory. It has to be connected with either a compiled Matlab file, or even with
an uncompiled Matlab file, which is then just able to be used together with a live
Matlab installation running on the workstation. In this description file, parameters
have to be defined, which can be accomplished with a default parameter editor,
and will be passed to Matlab before analysis execution.

e The second possibility is to design specific parameter interfaces and other visual
editors. These editors are built as Java Eclipse plugins and integrated into the
framework. After filling in the Parameter the plugin itself decides which Matlab
function should be called.

Integrated Framework — ‘

Data :> Plugins: Analyses &
(from case studies) Visual Visuali- Graphs

Editor _ I;’;;arrf];iesr zations Strategies
45
Visual Modelgg
Graphs
Matlab ~ Matlab |
model ___model

Figure 24: Concept of the tool framework with Matlab integration

There are other possible, much more complex, editors, which can build visual models
like decision trees or influence diagrams. These can be transferred as files to the Matlab
function. With this specific parameter interfaces, much more useful user interfaces can
be designed, where some logic can be hidden behind the edit boxes to check the param-
eters or pre-calculate parameters. The visual editors are built-in with Graphiti. There
are two possibilities to call Matlab functions, as described in Matlab Java connection in
3.1. The default, for most built-in analysis, will be to use compiled Matlab functions
created with the Matlab Builder JA, because it does not need any Matlab license owned

47

.

SECONOMICS

by the toolbox user. After calculating the analysis the data and graphs can be returned
to the framework.

4.2.3 Different parts of each model

As described in the project proposal, there are three different parts defined: the Securi-
ty Problem Structurer, the Security Problem Modeler and the Security Problem Solver.
Each model may consist of these parts, but not necessarily if, for example, no visualiza-
tion is needed.

4.2.3.1 Security Problem Structurer

The Security Problem Structurer supports the modeler by adding specific values or pa-
rameters to a given model created and visualized by the Security Problem Modeler.
Therefore, the Security Problem Structurer corresponds to the lowest layer in the over-
view of the Levels of abstraction.

4.2.3.2 Security Problem Modeler

The Security Problem Modeler is a model designer for a class of models, to create a spe-
cific instance of a model to match a problem. If possible, the designer is built as a visual
editor. For example, for the adversarial risk analysis an influence diagram designer can
be devised. Additional editors can be a utility function designer or decision tree visuali-
zation. To implement such visual designers, Graphiti will be used as explained in 3.4.

4.2.3.3 Security Problem Solver

The Security Problem Solver of each model is a calculation function of the model imple-
mented in Matlab. These are included in the tool as explained in section 4.2.2. The solv-
er therefore makes use of the Java/Matlab-Interface, as the interactions with the mod-
els are processed in Java.

4.2.4 User interface of the integrated tool box

All modules should be implemented into an integrated interface. At Fraunhofer ISST and
TU Dortmund, Carisma is used as a tool platform. Carisma is based on Eclipse and pro-
vides large-scale extendable interfaces. All modules will be implemented for this plat-
form as a tool plug-in. This creates an integrated impression while keeping components
separated. The degree of integration depends, among other issues, on the form of input
data that is provided by the case studies. It can be used just with quantitative statistics,
or with statistics linked with structure, or process models. In the latter case, a tighter
integration with the existing tool can be achieved and the representation of UML and
BPMN is supported natively in the tool. For example, the topology of the Metro can be
presented as a system diagram. The state of every module can be saved at (nearly) any
time. Some templates could be possibly generated at later stages.

In Figure 25, the user interface of Carisma is shown. It is running a frontend for a Matlab
implementation of Return on Security Investment as an integrated plugin. On the left
side of the toolbox, a model can be selected from the choice of models. This choice is
created by reading some configuration files. After selecting a model, the corresponding
plugin is loaded and shown in the main frame. Each Model can have its own individual-
ized parameter interface implemented as an own plugin and additional visual editors, or
it can simply use a standard form for filling in some parameters. After loading data and

48

P4

SECONOMICS

filling in the parameters, the form can be submitted and evaluated in Matlab. After that
is finished, a result form is shown, displaying the graphs and analyses.

leLs--cs 00T e
ﬁi’!ﬂa-mm . = _x_
File Edit Navigate Segrch Project Bun Window Help
52 H-D Q> BGr BPr G o s
@ Rosl Formulas 7 = B & RoSl caleulator £ = O || @ RoSI Plot Viewer I
5T RoSl1 Matlab Compiler Runtime = |
cth-cta fecia PNG Graphics Plot -

tep

(RSSRVI-AK. 155

Abszolute values % of Risk

Risk Exposure R 520 | Reset
Reduced Risk R

Difference R-R'

Security Cost Rt

OF Matlab decision r 1 a0 = -] ~
e 2 o .) "
0K Matlab Ready Sy Cont W~ —
) L -k

0K Plot decision

Figure 25: User interface of Carisma with a frontend for a Matlab implementation running in the background

4.2.5 Level of Abstraction

In order to make the tool usable for as many different kinds of applications as possible,
it should also support different kinds of user. These users will have, in general, different
knowledge and access to different information, something that should be taken into ac-
count by the tool. For this purpose, we have designed the concept of levels of abstrac-
tion. Each level needs different knowledge of the user and different information, too.
To reach this goal, a level is an abstraction layer to the level below. Each level defines a
specified amount of variables. A level has less possibilities of modification, and, besides,
less low level information is needed compared to the level below. But the upper level
has more and further reaching decisions to be made. Specifically, the lowest level is the
model creation level. It can only be done by people having deep knowledge about the
special kind of model. On the other hand, the last level has a few specified control vari-
ables, which influence all lower levels. Different choices of values for these control var-
iables can be made and the results can be shown. But, in the end, these values should
be chosen wisely. There can be as many levels as needed. The definition of the different
levels can be done in the model creation level, the model definition level and, perhaps,
in the model parameter level. It is done by defining open parameters for higher levels
and specifying visualizations and graphs for these levels. The definition will be saved in
configuration files for each model.

Now we give an overview of different possible levels:
¢ Model creation and implementation level

49

50

-

SECONOMICS

The lowest level will be the model creation and implementation level. At this lev-
el, the models are classes of models, like utility function models. To implement
one class of a model, this level has to be well understood. Therefore, the imple-
mentation can only be done from people with much knowledge about a specific
model class. In most of the cases, these people have to be from scientific back-
ground, like universities. The implementation is done, as shown in section 4.2.2,
with Matlab. Therefore, some knowledge about the implementation language is
also needed.

Model definition level

The second level is the model definition. A model definition can be thought of as
a specific instance of a class of models with a specific structure. If the implemen-
tation of a model allows an arbitrary structure or, at least, a kind of customiza-
tion of the structure of the model, it can be designed at this level. It can also be
possible that this level is hard-coded in Matlab, if an abstraction to more customi-
zation is impossible. Then, different predefined models will be given. Otherwise,
at this level there will be an editor created to design the structure of the model
in an easy way. This is already done as a prototype for the Security Problem
Structurer. To use this level, the user must have deep knowledge about the class
of the model, and also of designing such a model. This kind of users should in-
clude scientists from universities and consultants from consultant companies. On
this level, many different model parameters, which parameterize the model and
allow modifying it extensively, are specified.

Model parameter level

Parameters defined in the model definition level can be set in the model parame-
ter level. Besides, some parameters can be left out or, perhaps, filled with formu-
las depending on a new aggregation variable. These parameters and variables can
be determined as parameters for the next level. Some parameters might be de-
pending on statistical information and might require tables of empirical infor-
mation about the environment and company. This information might only be
gathered by different employees of the company with access to low level infor-
mation, because it is only available there, whereas it is only available in aggre-
gated form on higher levels. Therefore, the users of this level might be employees
with access to low level information.

Policy parameters level

There are possibly parameters defined for this level by the model designer or pa-
rameters that were left out on the model parameter level. This parameter level
should be used if many (more than five) parameters have to be filled in. These
parameters might define some characteristics of the company, like the im-
portance of different goals and the target values of the goals. This level needs the
user to have knowledge about the global strategy of the company and to have
rights of decisions. So, the users of this level can be seen as low-level decision
makers.

Control parameter level

The highest level can be seen as the control parameter level. This level should not
include more than five parameters, in the most cases only one or two different
parameters. These parameters highly depend on the strategy of the company, so
the user will be a high-level decision maker.

SECONOMICS
Level Tasks Users

Model creation and imple- | Create and implement clas- | Scientists

mentation ses of models

Model definition Design the structure of an | Scientists and consultants
instance of the model

Model parameter Fill in environment and | Consultants and employees
company specific infor-
mation

Policy parameters Fill in strategy policy pa- | Employees and decision
rameters makers

Control parameter Analyze and define the val- | High level decision makers
ue of the control parameter

Table 1: Definition of the different levels of abstraction usable in the tool framework

The advantage of this approach shall be summarized here. The main gain of the ap-
proach is that many different kinds of users can make easy usage of the tool, from the
model designer and consultant up to the decision maker himself. Besides, it is important
to note that needed knowledge is only available for different users. The tool aggregates
the required information, as well as shown information in the way the structure of the
company does. Perhaps, this can be done by allowing determining arbitrary levels of pa-
rameters.

4.3 Design of different tools

In this section we point out how the different tools in our toolbox are designed and what
features they provide. We also compare them to the existing tools introduced in chapter
2 and expose the improvements made in our tools with respect to fulfill our require-
ments.

4.3.1 Influence Diagram Editor

This tool is a Graphiti based prototypic editor for defining, modeling and analyzing deci-
sion theoretic influence diagrams. The editor’s structure and functionality are basically
inspired by GeNle editor (see section 2.3), but it is further extended to meet those of
our requirements that GeNle does not fulfill. A great difference with respect to GeNle is
that there can be two or even more stakeholders acting in one model. First of all, the
representations of the three model elements Chance, Decision and Value were imple-
mented, and a hypercube data structure to handle all the different input combinations
for each model element was developed. Further possible features of the editors are dia-
grams inside each element, which visualize the internal distribution inside the element.
Ideally, these distributions can be both discrete and continuous. Besides the graphical
representation in a diagram, there will be also tabular visualizations for empiric distri-
butions. The actions which are executed by the decision makers can also be both dis-
crete and continuous. A graphical representation of the Defender-Attacker model that
has already been handled in section 2.3 has been developed with the new Influence Dia-
gram Editor and can be found in Figure 26.

51

P d

SECONOMICS
*- DAmodel &2 =08
-z Palette [
h Select
[| Private Information [| Defender Strategy i~ Marquee

= Connections £

EReference
/ = Objects 4w
—_ | Defender (] | System :]I Attacker Decision
Value

Chance

<> | Value for Defender < I Value for Attacker

Figure 26: DA Model in Influence Diagram Editor Prototype

4.3.2 Decision tree visualization

With the help of this tool, we can visualize probability theoretic decision trees. This is
necessary due to the sometimes confusing display of tables from influence model ele-
ments, when there are a lot of parental elements which influence a single element. The
visualization as a decision tree makes it easier for the operator to understand the rela-
tions in complex influence diagrams. Such a decision tree is illustrated in Figure 27.

4.3.3 Adversarial Risk Analysis

The Adversarial Risk Analysis (ARA) can build a security decision problem from the per-
spective of the organization which is protecting an infrastructure. While this may be
done with influence diagrams for the defender and for the attacker, the ARA is further
able to identify potentially effective countermeasures. Thus the model includes a data-
base of countermeasures with relevant features, such as cost, difficulty in implementa-
tion, efficiency and more. It helps identifying and modeling the constraints relevant for
the problem including the maximum budget available or human resources available.

4.3.3.1 General

ARA is based on a game theoretical approach. There are two actors, a defender and an
attacker. As an input, the model can use statistical data from the case studies, e.g.,
probabilities or probability distributions. The model can be customized by selecting one
of the predefined types (although there can also be complicated games, such as Sequen-
tial Defend-Attack-Defend-Attack, SEQ-DADA) and by defining actors and actions for
them. Actions can be associated with specific probability distributions and costs. Then
the tool calculates the optimal decisions for the defender. The module is divided into
four tasks.

e First, the problem can be modeled as one of the predefined types as the one ex-
plained above, for example SEQ-DA, SEQ-DAD, SIM-SAD. At a later stage, there
could be more complex types, like SEQ-DADA. Perhaps, some types can be mod-
eled with a specific model editor, which is a decision at a later stage. In the de-
fault there are two actors defined, the attacker and the defender. As described
above, perhaps there is a possibility to add multiple actors.

52

g i

\: - {

SECONOMICS

e After defining the actors, the possible actions have to be declared. These actions
can be displayed as a decision tree, like the one shown in Figure 27. In this graph-
ical presentation, it is easy to add new possible actions. At each transition, a
probability distribution can be added, especially for the last transition to the final
state. First, there are only predefined phases available, perhaps in a later stage,
there could be the possibility to add further phases to the decision tree.

e After that, the problem information has to be provided, i.e. information about
the defender’s preferences and beliefs, and the defender’s opinion about the at-
tacker’s preferences and beliefs.

e After this input, the problem can be started to get solved. This happens in two
phases. In phase one, the probability of various attacks depending on the problem
and the given defense strategy will be identified with Monte Carlo. All these dis-
tributions will be shown as a graph. Possibly, some sensitivity analysis will be per-
formed by the defender. In the second phase, the resulting problem of the de-
fender will be solved. Some kind of automatic report will be generated to de-
scribe why this is the optimal resource allocation.

4.3.3.2 Parameters

As an input for the Matlab analysis toolbox, there are several parameters needed. Some
of them can be only defined in later stages, but some of them are already clear, and will
be described here. The first parameter, which chooses the Matlab function to execute,
is the selected model. As mentioned in section 4.2.2, it can be selected in an analysis
selector. Any predefined model has several assumptions. These are the number of play-
ers/actors, and the number of turns of the game. These parameters cannot be changed
as they are essential for the calculations of the model. Perhaps, in a later stage, these
assumptions might be softened. But the possible actions for each player have to be de-
fined. There are also parameters to be defined for the preferences, and beliefs of the
defender and the probability distributions for the preferences and beliefs of the attack-
er from the point of view of the defender, as they have uncertainty. Furthermore, the
probabilities of the possible states of the system depending on the choices of actions of
the defender and attacker have to be determined. All probabilities and probability dis-
tributions used in the model can be changed.

4.3.3.3 Editors

Although the models are predefined, they can be visualized with influence diagrams like
the one in Figure 26. Within this visualization, it is easy to change the parameters. The
model can be checked if all parameters are entered correctly, before it is sent to the
Matlab calculation engine. Decisions of actors can be displayed as decision trees, as
shown in Figure 27. In this way, a complete view over the model can be gained.

4.3.3.4 Graphs and Outputs

The model calculates the probability distributions for the defender (and also for the at-
tacker). With these distributions, the optimal policy can be determined. The output will
thus be the graphs of the probability distributions and the optimal policy.

53

SECONOMICS

Y
i S .
i!l A
X
) S "
X
rIl S
N
dy [p y
(£ S §

Figure 27: Example decision tree with defender D and attacker A and State S

4.3.3.5 Solving the Attacker’s problem using Matlab

The tool we have chosen for the implementation of the ARA models is Matlab. The ARA
models can be implemented in an intuitive and flexible manner in Matlab, allowing for
the inclusion of new pieces of code, or modules, when the model becomes larger and/or
more complex. Scripts for the resolution of the Sequential Defender-Attacker and the
Sequential Attacker-Defender problems have been already written and tested, with ex-
cellent results. We have already developed templates to solve the basic models intro-
duced in deliverable D5.1 - Basic Models for Security Risk Analysis. Following, we show
the Matlab code for the Sequential Defender-Attacker problem. See Appendix 1 for de-
tails on Matlab code implementation.

4.3.4 Economic Visualization

For a chief information security officer understanding the relative impacts on the securi-
ty attributes of a system by adjustments to security policy and investment are critical.
Consider the following dynamic stabilization model whereby the system state is de-
scribed by a vector model where:

Yi :[Ct'IUAl]))_IZ[CJ,A:'
Here, C, | and A represent measurements of confidentiality, integrity and availability.
The subscript t represents time and the bar symbol represents a target level based on a
set of policy preferences. The dynamic evolution of y is assumed to follow a stochastic
process, with general functional form:

t+At

(
Yiont = FLythtv & dSJ
t

Here, F(.) is a vector function mapping a series of control variables x and a noise process
&. A specific functional form is proposed in [16] and uses a two dimensional Brownian
motion, with non-linear adjustment in Confidentiality and Availability to trade function-

54

/1

SECONOMICS

al priority between these two features. Policy is implemented by minimizing the policy
makers expected loss function,

X, =argminL(A,x,)

By adjustments of the control variable x, the loss function in its most general form is:
t+At

L(Ax)= [exp(-At) f(y, - Y|x,&)ds

Here, f is a real valued function that translates expected deviations from target levels of
confidentiality and availability into an expected loss for the policy maker and g is a dis-
count factor. In [17], we present a methodology for exact identification of this loss func-
tion under a variety of assumptions of the process driving the future stochastic evolution
of y.

4.3.4.1 Visualization of the expected investment profile

The mathematical models will be implemented in Matlab. These can be integrated into
Java using the Matlab Builder JA so that no Matlab license for the actual execution of
the calculation is needed. The model receives statistical data as input with which the
derived functions can be evaluated. Among these data model parameters are required.
These are coefficients for the cost or utility functions. The data and parameters are en-
tered in the interface and then passed to the Matlab component (see Figure structure).
There, the implemented functions are evaluated, the optimum of the cost or utility
function is calculated and the result is returned to the interface. The functions can be
presented as a graph using the actual values from the case studies. These together with
the calculated results are given in a report.

4.3.4.2 Example 1: Fixed versus variable costs and choosing between regular security cy-
cles versus security adjustment on arrival of threats.

In this short subsection we present visualizations of a series of results on the timing of

security investment (in section 4.3.5 of this deliverable we address the measurement of

security investment in detail).

This example is based on the framework developed in [17], in this instance we consider
a firm deciding on the timing of security investment. We assume that the loss function is
of the Kahnemann-Tversky type with fixed points about the target levels of C, | and A,
see the following Figure 28.

55

o d

SECONOMICS

»

Utility
Fixed point

Gain side

Figure 28: Kahnemann-Tversky type loss function with fixed points about the target levels of C, and A

The policy maker then trades of future discounted loss over some fixed time horizon
(that may or may not be infinity). The speed of investment is then determined by the
weighted trade-off between degradation of the systems security attributes and the fixed
and variable cost of investment in mitigating them. This trade-off is captured by the ex-
pected time profile of two integrals, subtraction yields a trade-off curve, traversing the
zero axis represents the expected time of investment. For instance in a typical model,
these loss functions evolve over the forecast horizon, see Figure 29:

Loss due to investment function DETERMINISTIC deviation from target|
""" Loss due to system attributed EXPECTED deviations from target
— — — Expected investment timing

Loss

T
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|

1

o
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

Time

The trade-off curve is the difference between these two losses and can be seen in Figure
30:

56

P d

SECONOMICS

Figure 30: The trade-off curve is the difference between these two losses

This model predicts that implementation of security mechanisms will take place on a
weekly basis (the line crosses the abscissa axis at roughly 7 days). The plots above are
constructed using the Matlab programming language and maybe embedded in webpages
or applets designed to illustrate the choices available to the CISO. In this case we can
adjust discount rates to demonstrate the impact on the decision to adjust the invest-
ment profile and the timing of security investment.

4.3.4.3 Example 2: Firm stabilization profile

As the firm responds to security threats the adjustment profile outlined above will af-
fect the investment profile and other potential control variables. For instance if security
investment is one control variable and the degree of activity (from partial to complete
shutdown of IT systems) is another, then we can simulate a firms return to a normal op-
erating profile using an impulse response analysis.

Deviatian fiam Equillsiam.fmm 2 singk anh shagh in & Deviatian { e Equillriam. (12 m 2 singhe anh st in €

% Deiafan lam Equilitnium [id. Indexad). Coal =1 Hal Alatied]
5 Devision ham Equilitnum [tail Inderad]. Ga <1 Mot Aaned]

Evalution of Conualvaable x

Figure 31: First row: Deviation from the equilibrium from a single unit shock in C; Second row: Evolution of Control variable; For
example 1 and 2.

57

-

SECONOMICS

The usefulness of this is in indicating the length of time compared to the size of the se-
curity shock. This approach may be aggregated across firms to provide an aggregate se-
curity model for public policy.

The time profiles for investment and system activity may then be used to estimate total
cost of security incident over the life-cycle of the security incident.

4.3.5 Return on Security Investment

The cost of security incidents, caused by accidents, errors or attacks, can be reduced by
employing security applications. Return on Security Investment, abbreviated as RoSlI,
provides information about the benefits of these applications. The costs of the security
measures have to be set in relation to the original costs caused by the incident and the
reduction of the actual probability for an incident, or the reduction of the incident
costs, respectively. It is often hard to identify these measurements; although there are
various approaches to obtain them as, for example through the application of Bayesian
Belief Networks or other statistical metrics. But when all the necessary parameters for a
RoSI analysis are well known, the problem is reduced to the application of a simple for-
mula. There are different formulas leading to different types of results, such as an abso-
lute amount of the benefit, or a factor dependent on the security investment, among
others. One of these formulas will be introduced exemplarily in the following. For this
formula, which is described in detail in [10], is introduced as an illustration

_ CTbefore - CTafter

RoSI
° TCP

where three parameters have to be known
e The cost of threats before the application of security measures (CTpefore)
e The cost of threats after the application of security measures (CTater)
e The total cost of protection by a security measurement (TCP)

The difference of the cost of threats caused by security incidents before and after the
application of security measures is set in relation to the security measure’s total costs.
The RoSI resulting from this formula has to be interpreted as a factor, by which the ben-
efits gained with the security application exceeds its costs. When RoSI > 1, the security
investment is useful, as its cost is smaller than the expected vulnerability reduction.

4.3.6 BPMN

Business Process Modeling Notation (BPMN) is a graphical notation to visualize business
processes. The basic element for each model is a pool consisting of one or more lanes.
The whole business process is represented by the pool, whereas the lanes model differ-
ent accountability areas. Processes consist of different components, such as tasks,
gateways and associations between them. A task represents an activity that has to be
executed in the process. Activities are associated with each other by flows that model
the order of execution. Flows can be absolute, when a sequence of activities should al-
ways be executed in the pre-defined order, but they can also be dependent on different
parameters. Therefore, the gateways are used to model decisions in a flow. By means of
a dependent gateway, only one flow can be processed (OR gateway), but it is also possi-
ble to execute even more flows, to model parallel processes (AND gateway). The de-

58

-

SECONOMICS

pendencies can be checked for each flow separately, so that even the number of flows
that are actually processed can also vary.

Gateways can also be applied to merge certain sequence flows. There are also different
options concerning how to trigger the outgoing flow. This can be done, for example,
when the first flow reaches the gateway but, alternatively, after all ingoing flows have
reached it.

- Task 2A

—- Task 1 R ' - —%.—- - Task 3 | - | \

Task 2B

Figure 32: Simple BPMN process with parallel sequence flows

Figure 32 shows a simple example for a business process modeled with BPMN. After exe-
cuting Task 1, the gateway splits the control sequence up into two parallel flows and the
tasks 2A and 2B have to be processed in parallel. After both executions have finished,
the second gateway merges the sequence flows and Task 3 can start.

At Fraunhofer ISST, an extension for this BPMN specification is being developed, with de-
tailed information in [7]. With the extension, it is possible to apply risk analyses to BPMN
models. Based upon BPMN Modeler 2.0, Risk and Mitigation are integrated as additional
model elements into the specification. The Risk element requires two parameters: the
loss that a certain risk causes when it occurs, and the probability of occurrence of the
actual risk. Risk elements are associated with process tasks, as well as with other risk
elements. The required parameters can be set in the risk element itself once, but can
also be overwritten in each association individually. This makes it possible that Loss and
Probability of a Risk can vary for each task. Risk elements can also influence each oth-
er’s parameters. It is possible that a risk can increase or decrease the probability of oc-
currence and the loss caused by another risk to a certain task.

The second additional element of the BPMN extension, Mitigation, is a counter-measure
to risk. Mitigations are associated with risks but they can also affect other mitigations.
As input parameters, a Mitigation element needs actual costs of its implementation, and
values for probability, and loss reduction to a certain risk. The costs of Mitigations are
fixed, whereas the probability reduction can vary for each associated element. By means
of loss reduction and probability reduction, Mitigations can influence losses caused by a
risk. They can also influence the parameters of other Mitigation elements both positively
and negatively. Another possibility is that a Mitigation element can exclude the applica-
tion of certain other mitigations. It is also conceivable that mitigations depend on the
existence of another specified mitigation.

After such an extended BPMN model has been created with all its risk and mitigation el-
ements and the corresponding parameters, it is possible to perform security analyses on
this model. Therefore, Return on Security Investment analyses can be applied to it. Then
all possible combinations of mitigations in the model are evaluated and compared. In
the end, the combinations that lead to the best results represented by the minimized
total estimated risk are highlighted within the analysis view.

59

OMICS

e
=

SECON

Q— = | - | -@
N l B |
! '." | 1
P4 1

Figure 33: Extended BPMN process with risks and mitigations

Figure 33 shows an extended BPMN model, where the two sequential tasks, Task 1 and
Task 2, are threatened by the Risks Fire and Robbery, which are influenced by the Miti-
gations Alert System, Extinguisher and Super Alarm.

4.3.7 Statistical Tool

The models developed in the context of this project are partially based on statistical in-
formation, gained from the case studies. These statistical models might be implemented
as part of the toolbox. Then the toolbox will have a data importer to import the statisti-
cal data and show them in tabular form. Together with this information, some parame-
ters can be entered, like e.g. thresholds. Then, the statistical analytics can be started
and the visualizations are shown. The analytics should be implemented also in Matlab.
Customary statistical visualizations are, in principle, to be used, as e.g. histogram, box-
plots, or pie charts. The toolbox will provide a statistical tool, if needed. This tool will
enable the user to input statistical data on various places. Other tools and models can
use this package. The data can be imported from tables in different formats if needed.
After importing the data can be displayed in tables and edited, if necessary. With this
data, an empirical distribution is associated. Another possibility is to select a distribu-
tion from a portfolio of different pre-implemented distributions like Gaussian distribu-
tion, logistic distribution, Beta distribution, Uniform distribution, etc. Furthermore, this
tool enables the user to do some basic analytics, as calculating key figures for the em-
pirical data like median, weighted arithmetic average, geometric average, harmonic av-
erage, standard deviation, variation coefficient, quantiles, among others. If specific
functionalities are needed while researching the different parts in the other work pack-
ages, these functionalities will be provided here.

60

;;

SECONOMICS

4.4 Links to other work packages

In this section we contour the relations of our tool in WP8 to the other work packages of
SECONOMICS. Therefore, we point out which collaborating partners make use of specific
parts of the tool developed within WP8.

4.4.1 Work package 4

Work package 4 is led by the SOU Institute of Sociology of the Academy of Sciences of
the Czech Republic. Managed by P. Guasti, Z. Mansfeldova and J. Hronesova they use
the sociological analysis of security threats. Therefore, they will use mainly the statisti-
cal tool. The implementation of risk analyses from sociological perspectives is mainly
accomplished by the developers in SOU Prague, with support by Fraunhofer ISST.

4.4.2 Work package 5

Work package 5 which is led by David Rios Insua from Rey Juan Carlos University in Ma-
drid, uses the adversarial risk analysis of security threats. Therefore, the adversarial risk
analysis tool and also the statistical tool will be mostly used. Fraunhofer ISST supports
URJC Madrid in implementing the risk analyses.

4.4.3 Work package 6

Work package 6 uses the risk analysis from an economic point of view. Led by Julian Wil-
liams from the University of Aberdeen, most of their tools are developed by themselves
with little support from Fraunhofer ISST. Mostly the financial tool will be used in the
analyses from the members of work package 6.

61

_ .
- "’:::":\G‘-' :'.\- "‘q_‘f;'Q
\ \

SECONOMICS

5 Summary and conclusion

In this report we have seen how the toolbox will be created. At the end of the project,
an easy to use, and seamless integrated toolbox will be developed. After an introduc-
tion, defining the main targets and stakeholders of the toolbox, several tools developed
and used in the consortium are evaluated. Specifically two tools should be emphasized
here. Matlab is used to build the mathematical calculations for models. Then Matlab
functions will be integrated into the toolbox. The second tool is GeNle. Although GeNle
does not meet our requirements, some good ideas can be reused, mainly for the influ-
ence diagram designer. Furthermore, the techniques used in the implementation are ex-
plained as far as possible at this stage. The most important techniques are the integra-
tion of the Matlab calculations into the toolbox. This can be done either live with a run-
ning Matlab instance or compiled as a Java library. The second technique is the frame-
work Graphiti used for building visualizations in editors. With this framework it is rela-
tively easy to build such visual editors for our purposes. The last technique, mentioned
here in the summary, is the plugin strategy. All models and tools used in the toolbox are
built as a modular plugin.

The design of the toolbox is explained. The tool gets data from the case studies as input.
A specific model is created by adjusting the parameters, as far as needed, and assisted
by wizards, or by building a specific model with a visual editor. After the calculation has
been run in Matlab, the results are visualized, for example as graphs. This is the output
of the model.

Summarizing, an easy to use, seamless toolbox is created, where all mathematics is hid-
den behind the same user interface, and the use of the parameters is guided.

62

f“:}/l

SECONOMICS

6 Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

63

Sven Wenzel, Daniel Warzecha and Jan Jurjens: ,,CARiSMA - Evolution-aware Tool
Support for Model-Based Security and Compliance Analysis”. In: The 27" Intl.
Conf. on Automated Software Engineering, 2012.

Gabor Bergmann, Fabio Massacci, Federica Paci, Thein Than Tun, Daniel Varré and
Yijun Yu: “A Tool for Managing Evolving Security Requirements”. In: Lecture Notes
in Business Information Processing 107, pp. 110 - 125, 2012.

Siv Hilde Houmb, Virginia N.L. Franqueira and Erlend A. Engum: “Quantifying se-
curity risk level from CVSS estimates of frequency and impact”. In: The Journal of
Systems and Software 83, pp. 1622 - 1634, 2010.

Virginia N.L. Franqueira, Siv Hilde Houmb and Maya Daneva: “Using Real Option
Thinking to Improve Decision Making in Security Investment”. In: Lecture Notes in
Computer Science 6426, pp. 619 - 638, 2010.

Siv Hilde Houmb, Indrajit Ray and Indrakshi Ray: “Seclnvest - Balancing Security
Needs with Financial and Business Constraints™. In: Dependability and Computer
Engineering - Concepts for Software-Intensive Systems, pp. 306 - 328, 2012.

Theodor Schnitzler: “Entwicklung eines Eclipse-Plugins fur Matlab-unterstiitzte
Auswertungen des Return On Security Investment*, Bachelor thesis. Dortmund,
Germany: TU Dortmund, 2012.

Dominik Thalmann: ,,Erweiterung der Business Process Modeling Notation fir Re-
turn on Security Investment Analysen”, Diploma thesis. Dortmund, Germany: TU
Dortmund, 2013.

Joshua Kaplan. Matlabcontrol - A Java API to interact with MATLAB. 2012.
URL: code.google.com/p/matlabcontrol/.

MATLAB Builder JA User's Guide. 2.2.4. The MathWorks, Inc. 3 Apple Hill Drive,
Natick, MA 01760-2098, 2012.

Vicente Aceituno. Return On Security Investment. In: ISSA Journal - The Global
Voice of Information Security pp. 6-9, 2012.

Jesus Rios and David Rios Insua. Adversarial risk analysis for counterterrorism
modeling. In: Risk Analysis pp. 894-915, 2012.

David Rios Insua and Javier Cano. Basic Models for Security Risk Analysis.
SECONOMICS D5.1

Marek J. Druzdzel. SMILE: structural modeling, inference, and learning engine and
genie: A development environment for graphical decision-theoretic models. In:

[14]

[15]

[16]

[17]

[18]

[19]

64

f“:}/l

SECONOMICS

Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-
99), pp. 342-343, Orlando, Florida, USA, 1999.

David J. Lunn, Andrew Thomas, Nicky Best and David Spiegelhalter. WinBUGS - A
Bayesian modelling framework: Concepts, structure, and extensibility. In: Statis-
tics and Computing 10, pp. 325-337, 2000.

D. Pym, C. loannidis and J. Williams, Information Security Trade-Offs and Optimal
Patching Policies, (European Journal of Operational Research, Volume 216, Issue
2, 16 January 2012, Pages 434-444)

D. Pym, C. loannidis and J. Williams, Investments and Trade-offs in the Economics
of Information Security, in Financial Cryptography (2009), International Financial
Cryptography Association (IFCA), Springer Lecture Notes in Computer Science
(LNCS)

D. Pym, C. loannidis and J. Williams, Fixed Costs, Investment Rigidities, and Risk
Aversion in Information Security: A Utility-theoretic Approach. Proc. WEIS 2011,
Springer-Verlag George Mason University, Fairfax, Virginia, 14-15 June, 2011: WEIS
2011.

Matlab Documentation 2012, Key Product Description

Matlab Compiler Documentation 2012, Key Product Description

SECONOMICS

7 Appendix 1

Matlab code for implementing a sequential defend-attack-problem:

oe

SEconomics project
Script for the simulation algorithm for the sequential defend-attack
problem

o

o

o

Version 0.1. 2012/10/09. General structure

oe

See also TRIANGRND.M, DRCHRND.M

clear all

N led; % size of the MC sample

The first part of the algorithm deals with the estimation of pD(ajldi),
i.e., the probability (from the point of view of the defender) that the
attacker will perform an attack aj, given that the defender has
performed a defense di.

o° o o

oe

oe

We assume that we have m possible defenses, n possible attacks, and ns
possible outcomes of the attacks, following the notation in the
deliverable 5.1.

o

oe

m=4; % Number of possible defenses

n=3; % Number of possible attacks

ns=3; % Number of possible outcomes of the attacks

% We define the possible outcomes of the attack s\in{0,1,...,ns-1},
% although here we use their cardinals: 1,2,...,ns.

S=1l:ns;

oe

We define an (m x n) matrix PDhat containing all the \hat{p} D(a jld i).
This matrix does not depend on the number ns of possible outcomes of the
% attacks

o

PDhat=zeros (m,n) ;

o

We define the utilities uD for the different success of the attack. This
is an (m x ns) matrix, being its first column s=1 and the rest of the

o

% columns s=2,..., s=sn
=[200 50 10;

100 20 10;

80 10 0;

50 0 01;

o

We define the probabilities pD(S=s|d,a). When there are ns outcomes for
the attack, we have to define all the probabilities pD(S=s|d,a),

oe

% s\in{l,...,ns}, so we create an (m x n x ns) array with such
% probabilities
eD(:,:,1)=[0.45 0.2 0.1;
0.55 0.45 0.3;
0.65 0.55 0.45;
0.85 0.75 0.65];
eD(:,:,2)=[0.25 0.45 0.5;
0.2 0.25 0.35;
0.15 0.2 0.25;
0.1 0.15 0.27;
eD (: 3)=[0.3 0.35 0.4;

65

SECONOMICS

0.25 0.3 0.35;
0.2 0.25 0.3;
0.05 0.1 0.15];

% DOUBLE CHECK. The probabilities pD(S=s|d,a) for fixed d,a must sum up to 1
if any(any(sum(pD,3)-1>1e-10))
warning ('Double check the probabilities pD. There are inconsistencies')
pause
end

oe

We define now the parameters of the (triangular) distributions for the
utilities UA(a,s), for the different outcomes of attacks.

We need to define a specific function to sample from it, as it is not
implemented in Matlab. a, b, ¢ are the minimum, mode and maximum of the
distribution, respectively, It is defined in the M-file TRIANGRND.M.
UApar(:,:,1l)=zeros(3); % For the case s=0 (failure)
UApar(:,:,2)=[50,60,80; % For the case s=1 (moderate damages)

o° o0 o

oe

40,50,60;
25,40,50]";
UApar(:,:,3)=[80,100,100; % For the case s=2 (severe damages)
60,80,90;
60,70,90]"';

oe

We define now the parameters of the Dirichlet distributions for the
probabilities PA(S=s|a,d), for the different types of attacks and
defenses. We define it as an (m x n) cell array, and, in the (i,7J) cell
position, we store the parameters of the Dirichlet distribution
corresponding to the i-th defense and j-th attack.

We need to define a specific function to sample from it, as it is not
implemented in Matlab. It is defined in the M-file DRCHRND.M.

o o° o o o°

o

PA=cell (m,n) ;
for i=1:m

for j=1:n
probaux=pD(i,j, :);
PA{i,Jj}=probaux*10; % We multiply by 10, so they have smaller
% variance
end

end
% We define an (m x 1) matrix to store the expected utility for the defender

K=1; % Number of replicas to obtain boxplots for the utilities psiD
% This part can be removed if no boxplots are needed setting K=1.
psiDall=zeros (K, m,1) ;

doptimall=zeros (K, 1) ;

for k=1:K

for i=1:m % For each possible defense. In each of these loops, we compute
all the probabilities \hat{p} D(a j|d i) for fixed i
(N x n x ns) matrix to store the samples for the probabilities for
each defense and each attack
PAsample=zeros (N, n,ns) ;
$ (N x n x ns) matrix to store the samples for the utilities
UAsample=zeros (N,n,ns) ;
% (N x n) matrix to store the samples for the expected utilities
psiAsample=zeros (N,n) ;
We sample from the distributions of UA and PA, which are the
assessments of the Defender about the probabilities and utilities
of the Attacker
for j=1:n % For each possible attack

for s=1:ns

UAsample(:,J,s)=triangrnd (N,UApar(:,j,s));

o\° o\ o\

o\ o\ o\°

66

SECONOMICS

end

PAsample(:,J, :)=drchrnd (squeeze (PA{i,j}) ' ,N);

% We compute the expected utility for the defense i (fixed)
and all

)

% possible attacks j=1:n
psiAsaple(:,j)=
sum (squeeze (UAsample(:,J
*squeeze (PAsample (:,73, :)
end % end of for j=1:n
% We compute which attack provides the maximum expected utility
[psiAmax, aoptim] =max (psiAsample, [],2) ;
for a=1:n
PDhataux (a)=1length (find (aoptim==a)) /N;

;)).
) 2);

end

% We annotate the probabilities \hat{p} D(a_j|d i) for fixed defense
% di

PDhat (i, :) =PDhataux;

)

end % end of for i=1:m

% In this auxiliar matrix, we compute the products uD x pD for all
% possible outcomes of the attack
psiDaux=permute (repmat (uD, [1,1,n]) .*permute (pD, [1,3,2]),[1,3,2]);

for i=1:m
% We now compute the optimal defense
psiD (i) =sum(PDhat (i, :) . *sum(squeeze (psiDaux (i, :,:)),2) ") ;

end

psiD!';

disp(['The expected utilities are ',num2str(psiD)])

psiDall (k, :) =psiD;

[psiDmax, doptim] =max (psiD) ;

doptimall (k) =doptim;

disp(['The optimal defense is d',num2str (doptim)])
end

% We plot the boxplot only if we have more than one replication (K>1)
if K>1

mean (psiDall)

boxplot (psiDall, 'labels',{'d 1','d 2','d 3','d 4'})

ylabel ('Expected utility')

title('Expected utilities for the Sequential Defend-Attack problem')
end

67

