
Deliverable 6.1, A general systems
model architecture

Authors:
Matthew Collinson, David Pym, and Julian Williams
University of Aberdeen
Contributions from Robert Coles, Raminder Ruprai
National Grid
Further information from discussion for section 10 provided by
Woohyun Shim, UNITN
Luca Allodi UNITN
Fabio Massacci UNITN

Document Number D6.1

Document Title Deliverable 6.1, A general systems model
architecture

Version 0.5

Status First draft

Work Package WP 6

Deliverable Type Report

Contractual Date of Delivery 01.02.2013

Actual Date of Delivery 20.12.2012

Responsible Unit UNIABDN

Contributors Authors above

Keyword List Systems models, game theory, public policy

Dissemination level PU

2

SECONOMICS Consortium

SECONOMICS “Socio-Economics meets Security” (Contract No. 285223) is a Collaborative
project) within the 7th Framework Programme, theme SEC-2011.6.4-1 SEC-2011.7.5-2 ICT.
The consortium members are:

1
Universitï¿œ Degli Studi di Trento (UNITN)

38100 Trento, Italy http://www.unitn.it

Project Manager: Prof. Fabio

Massacci Fabio.Massacci@unitn.it

2
DEEP BLUE Srl (DBL) 00193 Roma, Italy

http://www.dblue.it

Contact: Alessandra Tedeschi

Alessandra.tedeschi@dblue.it

3

Fraunhofer Institute for Software and Systems

Engineering ISST Emil-Figge-Straï¿œe 91

44227 Dortmund, Germany

http://www.isst.fraunhofer.de/en/

Contact: Prof. Jan Jï¿œrjens

jan.juerjens@isst.fraunhofer.de

4

UNIVERSIDAD REY JUAN CARLOS, Calle

Tulipï¿œn s/n, 28933, Mï¿œstoles (Madrid),

Spain. http://www.urjc.es

Contact: Prof. David Rï¿œos Insua

david.rios@urjc.es

5

THE UNIVERSITY COURT OF THE

UNIVERSITY OF ABERDEEN, a Scottish

charity (No. SC013683) whose principal

administrative office is at King’s College Regent

Walk, AB24 3FX, Aberdeen, United Kingdom

http://www.abdn.ac.uk/

Contact: Prof. Julian Williams

julian.williams@abdn.ac.uk

6

FERROCARRIL METROPOLITA DE

BARCELONA SA, Carrer 60 Zona Franca,

21-23, 08040, Barcelona, Spain

http://www.tmb.cat/ca/home

Contact: Michael Pellot

mpellot@tmb.cat

7

ATOS ORIGIN SOCIEDAD ANONIMA

ESPANOLA, Calle Albarracin, 25, 28037,

Madrid, Spain http://es.atos.net/es-es/

Contact: Silvia Castellvi Catala

silvia.castellvi@atosresearch.eu

8

SECURE-NOK AS, Professor Olav

Hanssensvei, 7A, 4021, Stavanger , Norway

Postadress: P.O. Box 8034, 4068, Stavanger,

Norway http://www.securenok.com/

Contact: Siv Houmb

sivhoumb@securenok.com

9

INSTITUTE OF SOCIOLOGY OF THE

ACADEMY OF SCIENCES OF THE CZECH

REPUBLIC PUBLIC RESEARCH

INSTITUTION, Jilska 1, 11000, Praha 1, Czech

Republic http://www.soc.cas.cz/

Contact: Dr. Zdenka Mansfeldova

zdenka.mansfeldova@soc.cas.cz

10

NATIONAL GRID ELECTRICITY

TRANSMISSION PLC, The Strand, 1-3, WC2N

5EH, London, United Kingdom

http://www.nationalgrid.com/uk/

Contact: Dr. Raminder Ruprai

Raminder.Ruprai@uk.ngrid.com

11

ANADOLU UNIVERSITY, SCHOOL OF CIVIL

AVIATION Iki Eylul Kampusu, 26470, Eskisehir,

Turkey

http://www.anadolu.edu.tr/akademik/yo_svlhvc/

Contact: Nalan Ergun

nergun@anadolu.edu.tr

D6.1 - Deliverable 6.1: A General Systems Model Architecture 3/62

http://www.unitn.it
mailto:Massacci Fabio.Massacci@unitn.it
http://www.dblue.it
mailto:Alessandra.tedeschi@dblue.it
http://www.isst.fraunhofer.de/en/
mailto:jan.juerjens@isst.fraunhofer.de
http://www.urjc.es
mailto:david.rios@urjc.es
http://www.abdn.ac.uk/
mailto:julian.williams@abdn.ac.uk
http://www.tmb.cat/ca/home
mailto:mpellot@tmb.cat
http://es.atos.net/es-es/
mailto:silvia.castellvi@atosresearch.eu
http://www.securenok.com/
mailto:sivhoumb@securenok.com
http://www.soc.cas.cz/
mailto:zdenka.mansfeldova@soc.cas.cz
http://www.nationalgrid.com/uk/
mailto:Raminder.Ruprai@uk.ngrid.com
http://www.anadolu.edu.tr/akademik/yo_svlhvc/
mailto:nergun@anadolu.edu.tr

Document Change Record

DATE PARTICIPANT ACTIVITY

01/01/2012 ABDN (JW) visit by NGRID (RR) Content production

23/08/2012 ABDN (JW) visit to UNITN Content production

12/09/2012 ABDN (DP) Document skeleton creation.

27/09/2012 ABDN (MC,DP,JW) Draft document content specification.

08/10/2012 ABDN (DP) Draft of Section 1 Introduction.

10/10/2012 ABDN (DP) Draft of Section 2.

10/10/2012 ABDN (DP) Draft of Section 3.

10/10/2012 ABDN (DP) Draft of Section 4.

15/10/2012 ABDN (JW) Draft of Sections 1.1 through to 1.5.3.

21/10/2012 ABDN (JW) Draft of Section 10 following meeting with NGRID.

24/10/2012 ABDN (JW) Revisions to Section 1.

26/10/2012 ABDN (MC) Draft of Section 5.

03/11/2012 ABDN (DP) Draft of Section 7.

04/11/2012 ABDN (JW) Draft of Section 8.

04/11/2012 ABDN (JW) Draft of Section 9.

05/11/2012 ABDN (MC) Draft of Section 6.

20/12/2012 ABDN (JW) Revisions and edits to Sections 1,8,9,10.

21/12/2012 ABDN (MC) Edits to Section 5 and 6, and edits to 2,3,4.

05/01/2013 ABDN (JW) Draft of Executive Summary

18/01/2013 NGRID Meeting with Coles (Grid, NY)

23/01/2013 UNITN (Chiarini) Quality Check

28/01/2013 URJC (Rios) Scientific Review

28/01/2013 ABDN (JW) Edits following internal Scientific Review.

24/01/2013 ABDN (JW, MC) Minor edits following UNITN Quality Check.

25/01/2013 ABDN (JW) Final Minor Edits.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 4/62

Deliverable Description

Deliverable 6.1 from workpackage 6, presents the following: A general systems model archi-
tecture.: D6.1 will be written in a suitable modelling language such as Core Gnosis and will
the project consortium to build scenarios for testing various policy instruments.

Contents
Executive summary . 5

1. Introduction . 9

1.1 Rules-based versus Principles-based Approaches 11

1.2 Modelling Incentives and Principal-Agent Approaches 11

1.3 Principal-Agent Problems in Risk Management 12

1.4 Diminishing Marginal Returns to Security Investment 13

1.5 The Role of Public Policy . 14

1.5.1 Policy Agendas . 14

1.5.2 Insurance Markets . 15

1.5.3 Summary . 16

2. A Discipline of Mathematical Systems Modelling 16

2.1 Modelling Methodology . 17

2.2 Structure and Process Calculus . 18

2.2.1 Processes and Resources . 18

2.2.2 Location . 19

2.3 Environment . 20

3. Reasoning about Process Models . 20

3.1 Logic . 20

3.2 Model Checking . 21

4. The Gnosis Modelling Tool . 21

4.1 Adding located resource: secure boats . 22

5. Alternative Simulation Approaches . 26

5.1 Requirements . 26

5.2 Alternative Systems . 27

5.2.1 Traditional Applied Mathematical Systems 27

5.2.2 Systems for Concurrent Modelling . 28

5.3 Summary . 28

6. Mathematical Models to Matlab Models via Gnosis 28

D6.1 - Deliverable 6.1: A General Systems Model Architecture 5/62

7. An Architectural Methodology for Organizational Security Models 29

7.1 The Basic Concepts of Information Security 30

7.2 An Economic View . 31

7.3 Modelling the Security Architecture . 33

7.3.1 The Framework Layer . 36

7.3.2 The Instantiation Layer . 38

8. Real options and pricing risk . 41

9. Models of attack and defense with risk averse targets 43

9.1 A Policy Model with Insurance . 43

9.2 Attacking Targets and Levels of Defensive Expenditure 44

9.2.1 Self-Protection with Actuarially Fair Insurance 47

9.2.2 What does the equilibrium tell us? . 49

9.3 Policy Maker Utility Theory and Loss Function for Vulnerability Management 49

9.4 The Power Utility Family . 50

9.5 The Policy-maker’s Problem . 52

9.6 Decision Support . 53

10. Preliminary Models for National Grid . 55

10.1 SCADA and Control Systems . 55

10.2 Interconnectors . 56

10.3 Corporate Network . 57

10.4 Smart Metering . 57

11. Conclusions . 58

BIBLIOGRAPHY . 59

D6.1 - Deliverable 6.1: A General Systems Model Architecture 6/62

Executive Summary

Securing assets and the concept of security proffers an interesting set of challenges for
applied modellers. In many circumstances, for example in classical access control, models
of security processes need to represent system state (including the system architecture) in a
high degree of detail because of the extreme sensitivity of security properties to changes of
state. In many other circumstances, for instance in models of the behaviour of populations
of human and economic agents subject to security threats or in models of systems with
human security factors, this representation may need to include details of the choices and
preferences of the agents at work within the system. Now there many security situations in
which both types of detail are essential, for instance securing passenger safety in an airport
(and this is partly why airport security is not straightforward). Indeed, most of the situations
of interest in Seconomics will be of this nature.

However, and here is one of the challenges, it is (with any known technique) almost im-
possible to incorporate both detailed state and an agent-based economic view of incentives
and contracts in a way that allows tractable and robust prediction of future system behaviour.
One usually has a choice either to study very abstract models with tractable equilibria, or to
use detailed simulations in a more heuristic manner.

The objective of this deliverable is to provide a framework that encompasses a flexible
suite of models (and modelling techniques) that range from specific encapsulations of the
system architecture to those that abstract away from the specific security architecture, but
capture more of the agency, public good and externality issues involved in managing security.

Overview of The SECONOMICS Modelling Framework

The models included in SECONOMICS represent a toolbox of methodological approaches
that cover the security case studies evidence reported in the requirements for workpackages
1, 2 and 3 (see D1.3, D2.3 and D3.4). In deliverable D6.1 we will cover the following three
basic modelling approaches.

Phrasing of this document

In this document we will refer to ‘security problems’ as specific elements of the case study
(a specific security context) work that maybe modelled by a single version of our modelling
framework. For instance the security problems relating to SCADA systems for case study 2,
referred to in deliverable D2.3 is the problem space.

The models relating to SCADA systems are a set of models referring to the SCADA
system and related economic and social policy issues regarding security features of this
system. Therefore ‘model’ refers to the set of tractable architectures, policy objectives and
strategic interactions for this security problem case.

We refer to architecture usually in terms of the structure of the technological system.
Separately although this can be directly overlaid we refer to the ‘mechanism’ as the set of
constraints on strategic actions for ‘agents’ (those actors that make decisions relevant to
security outcomes within the case problem). Finally we have a series of metrics, that refer

D6.1 - Deliverable 6.1: A General Systems Model Architecture 7/62

to the security state of a particular system, these maybe measured inter temporally and
aggregated to form measures of the overall security status of a system within the security
problem context.

Structure of this document

This document is divided into sections based on a concurrent narrative surrounding the
SECONOMICS modelling framework. Each section contains specific information regarding
the design of models and where possible we have outlined specific examples.

Several sections contain specific information relevant to the modelling of security prob-
lems provided in the case study workpackages (WP1, WP2 and WP3). These are not de-
signed to be read by non-specialists, but to provide reference material for the project. Further
specific examples of the modelling framework are provided in a series of papers attached as
an appendix.

Section 1 introduces the overarching concepts of economic modelling for security policy
applications. Here we discuss the motivation for modelling, the types of policy questions that
can be answered with appropriate modelling techniques and some preliminary approaches
to the case study workpackages.

We also present an overview of the implementation mechanisms of policy approaches in
this context. In particular we focus on rules versus principles based approaches to enacting
policy requirements. Whilst this is a well known issue in most public policy contexts 1 it has
not been studied widely in the area of rule-setting in security. We introduce this concept
using some specific examples from critical national infrastructure.

Moving on from policy implementation, we begin to outline the needs for security policy
in an economic context by outlining a series of models of security scenarios. In each case
we illustrate the need for placing constraints on actions (due to incentive incompatibility) of
individual agents to maximize the global level of welfare.

In section 2 we present a detailed systems modelling framework with explicit representa-
tions of relevant systems architecture, and logical methods for reasoning about such models.

In section 4 we outline a simulation modelling tool GNOSIS that captures the mathemat-
ical structures outlined in 2. The GNOSIS modelling tool currently does not include specific
representations of economic theory. Part of the work of deliverable 6.1 is to illustrate how
we will use mathematical modelling languages such as Mathworks MatLab to integrate the
mathematical structures from 2 and integrate them with notions of utility theory and welfare
to better encapsulate the economic interactions inherent in such models.

Following on from this foundational work in section 5 we explain how we can use more
general mathematical modelling languages such as MatLab to capture the systems mod-
elling ideas outlined previously and then combine them with economic representations of
consumption and welfare. Section 6 then provides a set of references to elements of the
Mathworks MatLab programming language to illustrate the existing technologies that can be
used in conjunction with the GNOSIS modelling approach.

In section 7 we provide a specific guidance on integrating economic and systems models
1see for instance the The Institute of Chartered Accountants in England and Wales summary

paper on this topic in accounting http://www.icaew.com/~/media/Files/Technical/Ethics/
principles-vs-rules.pdf

D6.1 - Deliverable 6.1: A General Systems Model Architecture 8/62

http://www.icaew.com/~/media/Files/Technical/Ethics/principles-vs-rules.pdf
http://www.icaew.com/~/media/Files/Technical/Ethics/principles-vs-rules.pdf

in a security problem context. In subsection 7.3 we outline a worked example of an airport
security architecture. The systems model in this version of the model has a policy function
based on observed metrics that can be used to compare performance of different configura-
tions of the airport security architecture. We derive the core features of the policy function in
subsection 9.3.

The objective of this section is to demonstrate a model whereby taking the specific na-
ture of the system architecture in account offers major benefits over standard economic
interpretation, whereby the mechanism is generally simplified to allow for more comprehen-
sive comparative statics (elucidation of model properties by changing the structural model
parameters).

Section 8 presents a series of results broadly related market based pricing or real options
models. These models are useful when you have exogenous risks and allow for the calibra-
tion of monetized cost benefit analyses. The models typically measure risk next to a known
set of benchmarks with easy to value properties (e.g. using an asset pricing model, such as
a Geometric Brownian motion value process or a multi factor asset pricing model such as
the famous Capital Asset Pricing Model (CAPM). The objective of these models is to impute
discount rates on assets that allow for a) comparison and b) addition of risks. These risks
can be converted via a market mechanism to additive costs. This approach is useful when
there is at least one easily comparable liquid asset.

In section 9 we develop a series of micro theory models of externalities and incentives
(good when the architecture is simple, intractable to formulate otherwise) useful for under-
standing how to build contracts and incentive structures that improve welfare. This includes
principal agent problems, models of externalities and models of public policy, institutional
analysis and design. We also present an overview of insurance in this context, again with a
view to monetisation/or cardinality of preference of the impact of security policies.

In each of the modelling sections we outline a series of examples in this document, based
on the initial requirements from the case studies to illustrate how recombination of this set
of tools can be used and some indication of the appropriate balance of techniques given the
specific set of security problems envisioned within the project.

1. Introduction

Managers, consultants, and security engineers have responsibility for delivering the secu-
rity of possibly large, complex systems. Policy-maker and industry/business leaders, on the
other hand, have responsibility for ensuring the overall sustainability and resilience of in-
formation ecosystems that deliver services, including those in commercial, governmental,
intelligence, military, and scientific worlds. Despite these differences in focus and scope,
both groups must make policy design decisions that combine a wide range of competing,
often contradictory concerns.

Considering this range of stakeholders, we are motivated by the following closely re-
lated questions:

• For a given system, with a given set of stakeholders operating in given business and
threat environments, how do we determine what is an appropriate (i.e., effective, af-
fordable) security policy? What attributes should be protected, to what extent, in what

D6.1 - Deliverable 6.1: A General Systems Model Architecture 9/62

circumstances? What impact on business operations is acceptable, and at what finan-
cial cost?

• Such an analysis will, if it is to be achievable and robust, be dependent on the provi-
sion of rigorous economic and mathematical models of systems and their operations.
How are we to express and reason about policies so that their effectiveness against
the desired security outcomes and their impact upon the stakeholders and business
operations can be understood?

Our aim is to establish a mathematical basis for a systems security modelling technol-
ogy that is able to handle the structural aspects of systems, the stochastic behaviour of their
environments and, specifically, a utility-theoretic representation of security policies and their
effectiveness.

Previous work, largely conducted in the context of an industrial research laboratory (HP
Labs), has established a methodology of combining elementary utility theory with mathemat-
ical systems models [1, 2, 3, 4], grounded in the theory of distributed systems [5], for which
an execution engine has been developed (Core Gnosis [6]), to explore the value of security
policies and technologies. Between 2008 and 2011, Pym led, with Simon Shiu, a project
within HP Labs called ‘Security Analytics’ [7, 8, 9]. This project, which built on the parallel,
externally facing ‘Trust Economics’ project [10] funded by the Technology Strategy Board,
was concerned with applying mathematical systems modelling techniques (developed within
Trust Economics) to large-scale security management problems. Security Analytics worked
directly with some of HP’s largest customers, including the Manhattan-based security team
at Citigroup (the world’s largest bank). ‘Security Analytics’ has now transferred into HP’s
security business [7, 8] (http://www.hpl.hp.com/news/2011/oct-dec/security_
analytics.html)

An illustrative example, reported in [11], concerns the use of USB memory sticks by
the employees of a bank for the purpose of transporting data to and from client sites. Secu-
rity managers wish to mitigate the evident risk of data exposure by requiring employees to
encrypt data so transported. Implementing such a policy requires several actions on behalf
of the security manager: (investment in) training of staff (T), monitoring (M), and technical
support (S). Each of these carries a cost to the organization. Other costs are associated
with the actions of the employees: they may suffer embarrassment (E) if they are unable to
retrieve data when visiting a client, or they may be reprimanded (R) for failure to comply with
policy. An executable system model was constructed in which employees are modelled as
processes engaging in E and R actions, as well as productivity actions, modelled as suc-
cessful data transfers (Tr). The frequencies of these actions are determined as a function of
the level of T, M, and S investment. This model allows exploration of the variation in levels
of confidentiality and availability of data as T, M, and S are varied, and utility theory enables
analysis of the value of various security investment policies.

Similar methodology has been applied in a number of other scenarios, including an
analysis of patching policies for IT managers [12, 13], and the case of a large organization
managing information security policy and technology during a process of divesting itself of
subsidiaries [14]. This work employed a modelling tool, Gnosis [6], that captures a math-
ematical approach to modelling distributed systems based structural concepts of location,
resource, process, and, stochastically, environment [1]. Gnosis allows these concepts to
be deployed at varying scales, and is capable of modelling both protocol-level interactions

D6.1 - Deliverable 6.1: A General Systems Model Architecture 10/62

http://www.hpl.hp.com/news/2011/oct-dec/security_analytics.html
http://www.hpl.hp.com/news/2011/oct-dec/security_analytics.html

and system-scale evolutions, which is our focus here. For example, in [11, 14, 15, 9], as
described above.

The systems that we are interested in modelling and understanding — such as National
Grid’s power distribution and control systems, or the security systems in place at airports —
all operate within regulated environments.

An important, and immediately evident, question is the following: How should regulatory
policies and procedures be formulated and implemented? There are two leading candidates:

• Regulation by rules and compliance;

• Risk-assessment-principles- and validation-based regulation.

These choices are applicable across the range of domains of interest and application of this
project.

1.1 Rules-based versus Principles-based Approaches

Rules are sets of instructions, where each rule is subject to either a dichotomous (adhered
to, or not adhered to) or continuous (e.g., 90%, 70%, 50%, etc.) compliance measurement.
Principles are designed to be general statements that define a goal, or objective, of the
entity adhering to the principle. In the cases of information security or cyber-security, the
main constituent of a principles-based approach is a risk-based approach. Risk mitigation is
therefore built into the principle.

The main advantage of principles- or risk-based approaches to regulation is that they
can flexibly encompass a wider range of scenarios than rules-based approaches. However,
principles devolve discretion to the entity being regulated and require guidance on the level
of conservatism to be applied to their implementation. On the other hand, a rules-based
regulatory system ensures that all parties that need to adhere to it are applying the same
set of security controls, and may even specify the details of how the controls are to be
implemented. This can be seen as a ‘double-edged sword’ because whilst all parties will
have the same level of security, if there is a gap in the regulation — e.g., if a particular
aspect of security is missed — this will affect all parties in the same way and the systematic
risk will be high. Alternatively, a risk-based esystem, where the individual parties identify the
type of security controls that they will implement separately, ensures that the systematic risk
is lower.

It is important to note here that the risk-based methodology and framework described
below is simply a particular risk-assessment methodology. Both a risk-based and rules-
based regulatory framework could require a risk assessment to be completed but the specific
requirements around how it is done and applied to the business are likely to be different.

1.2 Modelling Incentives and Principal-Agent Approaches

If we assume that employees need to adhere to certain behavioural constraints to operate
towards a firm’s specific cost-risk target, and then a natural issue of aligning incentives
appears, this is a standard principal-agent problem in economics. As we add up the choices

D6.1 - Deliverable 6.1: A General Systems Model Architecture 11/62

of all of the firms as collections of principals and agents, we now move to a public policy
aspect of economics.

A natural question is where to place the specific constraints on behaviour and what mech-
anism (regulatory framework) should be used to enforce those constraints. In a principles-
based system a set of idealized outcomes is specified. Alternatively, if a public policy maker
sets a series of rules then these rules may (a) conflict with the risk targets of the firms, and
(b) conflict with the target risk of the agents working in the firm. Setting a penalty structure
based on violations of rules does not always result in the correct internalization of externali-
ties at both the level of the firm and the wider economy.

Externalities can arise from the following typologies of economic interactions:

• Principal agent problems within firms and organizations

• Investments in security protection

• Public policy and regulatory approaches (from an economic standpoint)

• The potential role for insurance as a mechanism of regulation

• The potential role of derivatives markets in hedging security risk.

This section is designed to be a general overview and not specifically attached to Critical
National Infrastructure (CNI) issues, although examples from this domain are given herein.

1.3 Principal-Agent Problems in Risk Management

We can treat part of CNI as an information processing ecosystem [16], where security leaks
have a variety of costs associated with them. Information ecosystems are commonly char-
acterized by services: individuals and organizations (agents) acting on behalf of other user
individuals and organizations (principals).

In the CNI industry as with other industries there are two levels to this. The policy-
maker or regulator at the very top (principal) communicates with individual organizations’
decision maker(s) who in this case are considered agents. The principles or rules previously
communicated to each organization’s internal decision-maker are then disseminated to its
employees. In this step, the internal decision maker becomes the principal and the employ-
ees the agents. The issue here is the appropriate communication of policies from the top
principal (policy-maker or regulator) to the agents (employees) at the bottom; this is known
as the ‘Principal-Agent problem’. For example, if the policy-maker defines principles that it
requires organizations to follow, these principles need to be ingrained in any controls the
internal decision-makers set for their employees.

This is in common with very many other economic activities, such as the mechanism
of government and the separation of ownership and management of firms. The heart of
principal agent problems stems from the misalignment of risk preferences between principals
and agents, and the cost of monitoring agents to the principal. Agents seek to maximize
their revenues; they can do this by taking more risk with the capital provided to them by the
principals — thus there is an incentive problem. This incentive problem can be mitigated by:

D6.1 - Deliverable 6.1: A General Systems Model Architecture 12/62

a) placing rules-based restrictions on activities, or b) contractually aligning the incentives of
the agents to the principals.

It is difficult to place the CNI Principal-Agent problem without the public policy context
and, vice versa, it is inappropriate to define the public policy role of CNI without understand-
ing the atomic, individual Principal-Agent problem within the structure of each firm.

1.4 Diminishing Marginal Returns to Security Investment

A key theme in the above example is the cost of investment in both security provision of
the ecosystem and monitoring the individual agents. A key tenet of the security economics
literature (see Gordon and Loeb [17] for a summary) is that the level of risk is (on average)
decreasing in investment and monitoring (in the case of efficient investment and monitoring
strictly decreasing) and that the rate of decrease is again diminishing with extra investment.
The term ‘monitoring costs’ includes all costs associated with aligning incentives (that reduce
the need for supervision) and opportunity costs created by engaging in this activity.

A simple two-dimensional model is as follows. Let x and y be the investments in security
technology and monitoring respectively. The principal’s problem is to minimize the following
loss function, by choice of x and y:

L(z)S(x, y; z) + x+ y.

Here S(.) is a risk function that translates investment in technology and monitoring into a
residual vulnerability of loss against an amount at risk L from a security breach, given a set of
environmental conditions contained in a state vector z. In this case z relates the level of effort
in attack and defense to the degree of loss. The value of the variables in the vector z might
be derived from an equilibrium relationship, for instance z may represent the Nash versus
Stackelberg equilibrium for a continuum of attackers and defenders. For instance, this vector
may incorporate a feedback from the size of the loss to the probability of a successful attack,
or in the case of externalities, z might contain the deviations of other firms requirements for a
global welfare maximising level of investment in monitoring and technology (a technological
externality). The salient point is that when a firm computes its optimal stance it only includes
costs that are directly relevant to it. If these are the sum of all costs in the economic system
then a Pareto efficient outcome is achievable (social welfare is maximized). However, if some
costs to other firms by a particular firm’s choices are not internalized by that specific firm (so
there are externalities), then social welfare cannot be maximized without some form of social
coordinator assigning property rights. These property rights then adjust the cost function to
account for the externalities (and hence they are internalized).

Consider the risk management case. In an interdependent economy the risk appetite of
a firm affects itself and other firms. If the cost of this risk sharing is not distributed across
firms in a manner that is appropriately weighted, e.g. assignment of liability claims (the
property right), then firms will only cost-in their own risk and not that of other firms in the
market. When firm weights are highly-asymmetric, firms are incentivized to dump risks rather
than pool them. In a CNI context, using electricity delivery as the example, the electricity
distributors and generators may not appropriately secure their own assets connected to
electricity transmission systems and assets against cyber threats. This is because they

D6.1 - Deliverable 6.1: A General Systems Model Architecture 13/62

assume that the transmission operator, National Grid, will undertake the cost of protection
(having the higher weighting in the economy).

Nesting this problem within a complex ecosystem linked by z, we can create an rich family
of models that capture many of the observed phenomena documented in the practitioner
literature.

Atomized models such as those outlined in the previous sections can be added together
using conventional utility functions to monetize losses of different types, including cyber risks
being materialized. This form of multi-attribute utility theory is commonly used in security
policy to assist in the monetization and cross addition of losses from various types of security
breach; see, for instance, (Ioannidis, Pym, and Williams [5]).

1.5 The Role of Public Policy

Once a model of the threat environment and the interaction of the dimensions of investment,
risk and environment has been mapped, the next step is to understand the interaction of
policy in the creation (or erosion) of incentives to effectively manage risk.

In security policy scenarios the models have three classes of actors, which have been
mentioned in earlier parts of this section, but are presented again for clarity:

Policy makers or regulators that have objective functions based on broad social welfare
targets. In the case of National Grid and the electricity transmission network in the UK, the
regulator is the Department of Energy and Climate Change (DECC).

The alignment of incentives between the layers of policy makers in this context proffers
an interesting set of economic questions. First, are policy makers operating with identical
enforcement practices. For instance, in critical infrastructure the government policy maker,
the infrastructure provider management at various levels or in Airport security processes,
there are multiple layers to the policy management issue. Not all of the layers of management
have the same incentive structure.

1.5.1 Policy Agendas

Policy (in this context) is constrained to mean the following:

• Imposing punishments on revealed antagonists, such as fines for employees commit-
ting gross misconduct in particularly sensitive environments such as CNI;

• Requiring particular behaviours of the agents that are exposed to risk (with punish-
ments for non-compliance) — this is a rules-based system where specific requirements
are imposed on the agents below;

• Providing global insurance to agents in the event of loss for a particular level of rent.

A substantial tract of Economic analysis focuses on efficient distribution of resources to
participants in an economic system. The trade-off is between Pareto efficiency and the Nash
equilibria driven by strategic players best response strategies. Under most circumstances
these are not the same, i.e. in the absence of a social policy maker the global welfare
maximizing choices are not the choices undertaken by the

D6.1 - Deliverable 6.1: A General Systems Model Architecture 14/62

Pareto efficiency implies that social welfare is maximized via a process where each par-
ticipant maximizes their own utility function over a set of preferences. There is a gradual
convergence towards a maximum social welfare point through the continuous individual opti-
mizations. The optimization is assumed to produce a social welfare optimum in the absence
of externalities between agents. Externalities refer to direct and indirect effects on other
agents not accounted for by other welfare maximising agent in their own utility functions.

A good set of examples stem from the public goods literature on externalities that are
not internalized by individual agents. ‘Tragedy of the commons’ problems involve public
goods for which the sustainability of the public good is often not sufficiently weighted by the
group of individuals utilising this good. Grazing rights on public land are a good example of
externalities in public goods.

For individual firms within an economic system, regulation is formed from a variety of
constraints on behaviour (for instance minimum levels of effort and investment in technolog-
ical and human security) that have punishments for non-compliance. Policy makers can act
as enforcing mechanisms for social coordination problems of information sharing.

A fundamental economic concept is that the presence of externalities creates the need
for public policy interventions. This intervention can come in several varieties, for instance
a restriction on behaviour to ensure a socially optimal outcome (e.g. forcing individuals with
penalties to ensure their computers are updated and secure) or by assigning property rights
and liability clauses that distribute costs in a manner that reflects the cost of action on others
arising from individual choices.

For information security, the literature has identified potential coordination mechanisms:

• Information sharing and coordination on potential risk vectors. Mechanism: Compul-
sory reporting of information to an information clearing house that then sets out guid-
ance on risk mitigation (this is the current American approach to cyber-security). This
assumes that all costs can be identified and allocated by appropriate information shar-
ing mechanisms. Transfers to mitigate externalities are then isolated as direct transfers
(e.g., private litigation or via memberships of associations with credentials);

• Behavioural constraints. Mechanism: Enforcing behaviours via a rules-based system
or a set of risk targets evaluated by sets of metrics designed by the policy maker or
regulator. This sets out behavioural constraints (either via principles or rules) that have
penalties associated with non-compliance. These penalties need to reflect the costs
not borne by individual agents (firms or staff) for their own personal actions;

• Insurance markets — these are discussed further below.

1.5.2 Insurance Markets

Mechanism: Compulsory purchasing of insurance from either a monopoly insurer or insur-
ance market. The insurance company then sets behavioural requirements contractually. Two
types of insurance market are possible:

• Compulsory insurance markets, all agents (usually at country level) need to purchase
insurance, from either a monopoly or competitive market;

D6.1 - Deliverable 6.1: A General Systems Model Architecture 15/62

• Voluntary insurance, again either from either a monopoly or competitive market. The
mechanisms are required in cases whereby an externality exists. Their efficacy is
then based on the efficiency (from a global social welfare perspective of the cost of
mitigation) in internalizing externalities.

Internalizing externalities is the process by which the cost (or benefit) of an externality is
incorporated into an agent’s utility function (either via joint-optimization or constraint) and as
such the potential externality is internalized. From the previous discussion the position of a
critical infrastructure provider results in two potential effects:

• First, they absorb externalities because a cost of security failure is so high that they
are willing to bear the costs of other firms and agents (There is a positive effect for the
other agents, but a negative effect for the critical infrastructure provider);

• Alternatively, a negative effect for the other agents, but positive effect for the critical
infrastructure provider is that the infrastructure provider’s security costs are dispropor-
tionately distributed to other agents.

More specifically, in the list of potential mechanisms previously discussed, the first ap-
proach maximizes social welfare valid if the attack probability S(x∗, y∗) for optimal choices
of x and y is independent of the choices of other agents (employees) in the system. This
approach is effective in dealing with externalities, but may not be flexible enough when the
problem is extended to a dynamic setting with repeated interactions; that is, the risk gen-
erating mechanism changes or the technology of defence renders the imposed constraints
irrelevant.

1.5.3 Summary

This section has reviewed potential areas of public economics that could be applied to the
regulation of various types of firms, individually and in groups. We have reviewed the vari-
ous types of mechanisms that can allow risks to develop and the methods commonly used
in economics to mitigate or monetize them. We have outlined the advantages and disad-
vantages of three mechanisms of risk sharing: public policy based approaches with self
insurance, insurance markets (monopoly and competitive) and market-based approaches
using derivatives contracts.

2. A Discipline of Mathematical Systems Modelling

All of the policy formulation and decision-making problems discussed above are situated in
the context of complex (information processing) systems.

Many security modelling situations require a richness of detail in the models, for example,
when a decision-maker wishes to understand the behaviour of a system with complex, inter-
acting components and security controls. In these situations, a fine-grained view of system
state and evolution is required that is, at the very least, difficult to describe and analyze using
classical equational methods. Indeed, a view of state that is formed in precise, logical terms

D6.1 - Deliverable 6.1: A General Systems Model Architecture 16/62

and that evolves via discrete events can often be more useful. Moreover, preferences regard-
ing choices of security controls may depend crucially upon (fine-grained, logical properties
of) the states visited by the system as it evolves, since these may determine, for example,
whether a particular exploit is (or can be) realised.

Simulation modelling is a key tool for exploring and reasoning about complex dynamical
systems. Many languages and tools for simulation available. In particular, it can be applied
in the fine-grained situations alluded to above.

We describe a mathematical framework that supports a modelling idiom based on the
core concepts of process, resource, and location, and which also supports stochastic meth-
ods for representing environments. In this section, we draw directly upon the content of
[2].

2.1 Modelling Methodology

It is often difficult to validate models of complex systems. Indeed, there are important ques-
tions about the faithfulness of the representation of the underlying system and, so, about
the extent to which models can be reliably/usefully predictive. These concerns suggest that
it is appropriate to use an approach based on the disciplined use of small, expressive, lan-
guages that have a formal semantics and which are implemented with a high-degree of
integrity, employing constructs that naturally support the modelling idiom. Such a language,
Core Gnosis, is described in Section 4 below. We intend to use an implementation of this
type of mathematical approach, however we intend to implement it in a more easily cross
compatible platform, in this case we have chosen the software package MatLab, which is
commonly used in industry and academia.

It is useful to argue — see, for example, [4] — that the key structural aspects of systems
are the ones discussed below. This point of view is consistent with the classical view of
distributed systems, as described, for example, in [5].

Process. Synthetic systems exist in order to deliver services (i.e., processes that execute
on the system’s architecture).

There are number of familiar aspects of the intuitive notion of process that we might natu-
rally want our model of process to capture. These include sequencing, choice, concurrency,
recursion, and others.

Resource. A system’s resources, relative to which the system’s processes execute, con-
sists of a collection of quantities that may be utilized by the processes in order to achieve
their intended purposes.

Recent work on resource semantics (see, for example, [18, 19]) suggests that capturing
the idea that resource elements may be combined and compared is sufficient for a great
deal of progress to be made.

Location. Generally, system architectures are highly distributed, either logically, physi-
cally, or both. System resources are distributed around a collection of locations, and loca-
tions have connections between them.

Environment. Systems exist within external environments, from which events are incident
upon the system’s boundaries. Typically, the environment is insufficiently understood and too
complex to be represented in the same, explicit, form as the system itself.

We represent the impact of the environment on the system of interest as the incidence of

D6.1 - Deliverable 6.1: A General Systems Model Architecture 17/62

random events upon the system’s boundary. Some internal components of systems, whose
detailed form and operation is unimportant for the model, may be treated as environmental.

2.2 Structure and Process Calculus

We describe a mathematical treatment of the core system components discussed above.

2.2.1 Processes and Resources

We give a brief review of the process calculus SCRP [3] of resources and processes (which
builds on and consolidates [20, 21]) and its extension to locations [4].

Our starting points are Milner’s synchronous calculus of communicating systems, SCCS
[22], perhaps the most basic of process calculi, and the resources semantics of bunched
logic [23, 18]. The key components for our purposes are the following:

• A monoid of actions, Act, with a composition ab of elements a and b and unit 1;

• The following grammar of process terms, E, where a ∈ Act and X denotes a process
variable:

E ::= a : E |
∑
i∈I

Ei | E × E | X | fixiX.E | (νR)E.

Most of the cases here, such as action prefix, sum, concurrent product, and recursion (in
the fixi case, X and E are tuples, and we take the ith component of the tuple), will be
quite familiar to theorists. The term (νR)E, in which R denotes a resource, is called hid-
ing, is available because we integrate the notions of resource and process. Its meaning is
discussed below; it generalizes restriction.

Our mathematical treatment of resource — encompassing natural examples such as
space, money, and computer memory — is based on ordered, partial, commutative monoids;
for example, the non-negative integers with addition, zero, and less-than-or-equals.

• Each type of resource is based on a basic set of resource elements;

• Resource elements can be combined (and the combination has a unit);

• Resource elements can be compared.

Formally, we take pre-ordered, partial commutative monoids of resources,

(R, ◦, e,v),

where R is the carrier set of resource elements, ◦ is a partial monoid composition, with unit
e, and v is a pre-order on R.

The basic operational semantics idea is that resources, R, and processes, E, co-evolve,

R,E
a−→ R′, E ′,

according to the specification of a partial ‘modification function’, µ : (a,R) 7→ R′, that deter-
mines how an action a evolves E to E ′ and R to R′.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 18/62

The base case of the operational semantics is given by action prefix:

R, a : E
a−→ R′, E

µ(a,R) = R′.

Concurrent composition, ×, uses the monoid composition (written as ◦) on resources,

R,E
a−→ R′, E ′ S, F

b−→ S ′, F ′

R ◦ S,E × F ab−→ R′ ◦ S ′, E ′ × F ′
.

Modification functions are required to satisfy some simple coherence conditions:

• µ(1, R) = R, where 1 is the unit action, and

• if µ(a,R) ◦ µ(b, S), and R ◦ S are defined, then µ(ab,R ◦ S) ' µ(a,R) ◦ µ(b, S).

Here ' is Kleene equality. In some circumstances, additional equalities may be required
[3, 4]. The other process constructs are treated similarly.

2.2.2 Location

Just as our treatment of resources begins with some basic observations about some natural
and basic properties of resources, our treatment of a useful notion of location starts with the
following basic requirements [4, 2, 1]:

• A collection of atomic locations, which generate a structure of locations;

• A notion of (directed) connection between locations, describing the topology of the
system;

• A notion of sublocation (which respects connections);

• A notion of substitution (of a location for a sublocation) that respects connections, pro-
viding a basis for abstraction and refinement in our system models.

The resulting calculus has transition systems with dynamic behaviour of the following
form:

L,R,E
a−→ L′, R′, E ′,

where a is an action (in the usual process sense), L, L′ are location environments, R, R′ are
resource environments and E, E ′ are processes used to control the evolution. Modification
functions are extended to include locations, µ : (a, L,R) 7→ (L′, R′), with corresponding
versions of the coherence conditions.

The following is the rule for action prefix:

L,R,E
a−→ L′, R′, E ′

Action

where (L′, R′) = µ(a, L,R).

D6.1 - Deliverable 6.1: A General Systems Model Architecture 19/62

The following quite general form of the product rule in the presence of locations makes
use of a notion of product of locations:

L,R,E
a−→ L′, R′, E ′ M,S, F

b−→M ′, S ′, F ′

L •M,R ◦ S,E × F a·b−→ L′ •M ′, R′ ◦ S ′, E ′ × F ′
Product

where • is the product of locations. Various simpler forms, such as taking a fixed location,
make sense in absence of a product of locations [4, 1]. We can also take a Frame rule (with
respect to resources):

L,R,E
a−→ L′, R′, E ′

L,R ◦ S,E a−→ L′, R′ ◦ S ′, E ′

provided µ(a, L,R ◦ S)) is defined.
This approach stands in contrast to that of Milner and others, in which a single language

representing all of the modelling constructs is sought.

2.3 Environment

In our approach to Core Gnosis below, the environment is handled stochastically. In con-
strast to the work of Hillston et al. [24], our approach — in the spirit of the denotational
semantics of programming languages — is to develop our semantic structures in parallel
with our modelling language, Core Gnosis. The two are then related by an interpretation of
the modelling language in the structures, about which we seek to establish certain proper-
ties.

3. Reasoning about Process Models

3.1 Logic

Process calculi such as SCCS, CCS, and the pi-calculus come along with associated modal
logics [25, 26, 27]. Similarly, the calculus of Section 2.2 has an associated modal logic, MBI
[3, 20, 21]. The basic idea — deriving from Hennessy-Milner logic [25, 27] — is to work with
a logical judgement of the form R,E |= φ, which is read as follows: relative to the available
resources R, the process E has property φ.

The relationship between truth and action is captured by the clauses of the satisfaction
relation for the (additive) modalities, given essentially as follows (recall that R′ = µ(a,R)):

R,E |= 〈a〉φ iff there exists E ′ such that R,E a−→ R′, E ′

and R′, E ′ |= φ

R,E |= [a]φ iff for all E ′ such that R,E a−→ R′, E ′,

R′, E ′ |= φ.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 20/62

In this setting, however, the multiplicative conjunction, ∗, that is available in bunched logic
[23, 28]provides a characterization of this judgement that is rather finer that which is available
in basic Hennessy-Milner logic. Specifically, we obtain the following characterization of the
concurrent structure of models:

R,E |= φ1 ∗ φ2 iff there are R1 and R2 such that

R1 ◦R2 v R and there are E1 and E2

such that E1 × E2 ∼ E, and

R1, E1 |= φ1 and R2, E2 |= φ2.

The truth condition for the multiplicative conjunction requires the combination of resources
from the truth conditions for its component formulae. The meaning of the usual, classi-
cal/intuitionistic additive connectives — >, ∧, →, ⊥, and ∨ — is discussed in [3, 4, 2, 1],
along with the multiplicative implication corresponding to ∗. All of the process combinators
described above obtain logical interpretations.

With locations, a similar logical judgement is available [4]: L,R,E |= φ, where the prop-
erty φ of the process E holds relative to resources R at location L; that is, if a is an action
guarding (the rest of) E, then µ(a, L,R) is defined.

3.2 Model Checking

Model checking is an important technique in computational logic. It addresses the following
problem: For a given system of logic, does a given modelM satisfy a given proposition φ?
That is, for the given logic’s satisfaction relation |=, doesM |= φ hold? Here we are assuming
that the modelM is a form of transition system, as is the case for the logics we have set up
in this work. Model checking provides a valuable component of the logical process approach
to systems modelling; that is, the ability to check that the correctness of assertions about
the state of a model (albeit for now only quite simple ones). A comprehensive collection of
references on the techniques of model checking is available in [29, 30]. A degree of model
checking is available for the process calculus of Section 2.2 and the logic MBI has been
implemented [1].

4. The Gnosis Modelling Tool

We introduce very briefly the Core Gnosis modelling language via a series of examples to
illustrate the disciplined approach to modelling discussed above.

Core Gnosis includes constructs for describing processes, resources, and locations that
capture many (though, at this stage, not quite all) aspects of the mathematical structures
described above.

Birtwistle’s [31] provides a classic example: the docking of boats in a harbour with various
jetties and tugs, which we extend to include secure docking of boats [2, 1]. Here is a first,
simple version in Core Gnosis, taken from [2, 1].

D6.1 - Deliverable 6.1: A General Systems Model Architecture 21/62

-- title : Boats example : time units = hours
-- seed = 426724262

param runTime = (24 * 7) // 7 days

param numJetty = 2; param numTug = 3

param dockTime = negexp(2.0)
param undockTime = negexp(1.5)
param unloadTime = uniform(1.0, 4.0)

param boatMeanArrival = 10.3
param boatDelay = negexp(boatMeanArrival)

share jetty numJetty
share tug numTug

process boat = {

claim 1 jetty
claim 2 tug; hold(dockTime); release 2 tug

hold(unloadTime)
claim 1 tug; hold(undockTime); release 1 tug

release 1 jetty
hold (boatDelay); launch boat

}

launch boat

hold (runTime)
close

The model defines a series of constants and distributions (via the param keyword), and some
shared resource elements, namely jetties and tugs (via the share keyword). A single process
corresponding to the boat’s activities is then defined (using the keyowrd process): getting a
jetty, getting some tugs (using claims), docking , unloading, (by holding for a period of time)
and so on. An instance of a boat is (immediately) launched and the simulation then runs for
168 (= 24 × 7) (simulated) hours before closing. Each of these keywords has a quite intuitive
meaning, but more formally the semantics of models is defined by a scheduler [1].

4.1 Adding located resource: secure boats

We illustrate location by adding security properties to the simple boats example.
There are two kinds of dock, Basic and Secure, together with a Guard area to access of

control to the Secure docking area. There is a pool of tugs that can be moved between the
Basic and Guard locations and from Guard to Secure and and back to Basic. The first part
of the model gives the parameters:

param runTime = (24 * 7) // 7 days

param numJetty = 2; param numTug = 3
param numSecureJetty = 1; param numSecureTug = 3

param dockTime = weibull(2.0, 1.5)
param undockTime = weibull(1.5, 1.5)
param unloadTime = uniform(1.0, 4.0)

param checkTime = weibull (2.0, 3.0)

D6.1 - Deliverable 6.1: A General Systems Model Architecture 22/62

param passCheck = normal (1, 0.5)
param passLevel = 0.5

param boatMeanArrival = 10.3
param boatDelay = negexp (boatMeanArrival)

param secureBoatMeanArrival = 18.9
param secureBoatDelay = negexp (secureBoatMeanArrival)

param checkInterval = 3.5
param checkDelay = negexp (checkInterval)

With these parameters in place, we can introduce locations and links between locations.
The next part of the model defines the shared, located resources that are needed:

location Basic, Guard, Secure
link Basic ↔ Guard → Secure → Basic

share jetty@Basic numJetty
share jetty@Secure numSecureJetty

share tug@Basic numTug
share tug@Secure numSecureTug

There are now two kinds of boat, Standard and Secure. Standard (or low-security) boats
can only use the Basic jetties whereas secure (or high-security) boats can only use the
Secure jetties. Each tug can be used to dock/undock the boats in either dockingarea. Tugs
may need to change their rôle/location and move from one to the other as determined by the
dock’s operational requirements.

Here is the standard boat process:

process boat = {

claim 1 jetty@Basic

select [claim 2 tug@Basic] {
hold(dockTime)
release 2 tug@Basic

}

or [claim 2 tug@Guard] {
move share (2) tug@Guard → tug@Basic
hold(dockTime)
release 2 tug@Basic

}

or [claim 2 tug@Secure] {
move share (2) tug@Secure → tug@Basic
hold(dockTime)
release 2 tug@Basic

}

hold(unloadTime)

select [claim 1 tug@Basic] {
hold(dockTime)
release 1 tug@Basic

}

or [claim 1 tug@Guard] {
move share (1) tug@Guard → tug@Basic

D6.1 - Deliverable 6.1: A General Systems Model Architecture 23/62

hold(dockTime)
release 1 tug@Basic

}

or [claim 1 tug@Secure] {
move share (1) tug@Secure → tug@Basic
hold(dockTime)
release 1 tug@Basic

}

release 1 jetty@Basic

hold (boatDelay); launch boat
}

Notice that tugs are initially claimed from either the Basic, Guard, or Secure pools and,
if necessary, moved into the Basic pool. Our version of move can only move resources
already owned by the process (i.e., claimed) from one location to another, and can only
do so along a valid link between the two locations. Once a resource is moved to a new
destination, it must also be released back to that new location, not to the one from which it
was claimed.

Here is the secure boat process:

process secureBoat = {

claim 1 jetty@Secure
select [claim 2 tug@Secure] {

hold(dockTime)
release 2 tug@Secure

}
or [claim 2 tug@Guard] {

move share (2) tug@Guard → tug@Secure
hold(dockTime)
release 2 tug@Secure

}

hold(unloadTime)

select [claim 1 tug@Secure] {
hold(undockTime)
release 1 tug@Secure

}
or [claim 1 tug@Guard] {

move share (1) tug@Guard → tug@Secure
hold (undockTime)
release 1 tug@Secure

}
release 1 jetty@Secure

hold(secureBoatDelay); launch secureBoat
}

The next process performs the ‘randomized inspection’ of tugs — the check process
takes either one or two tugs in Basic and ‘decides’ (via a distribution) whether or not to
inspect. The tugs always end up in the Guard area:

process check = {

select [claim 1 tug@Basic] {
move share (1) tug@Basic → tug@Guard

D6.1 - Deliverable 6.1: A General Systems Model Architecture 24/62

if [passCheck > passLevel] {hold(checkTime)} or else {}
release 1 tug@Guard

}

or [claim 2 tug@Basic] {
move share (2) tug@Basic → tug@Guard

if [passCheck > passLevel] {hold(checkTime)} or else {}
release 1 tug@Guard

if [passCheck > passLevel] {hold(checkTime)} or else {}
release 1 tug@Guard

}

hold(checkDelay); launch check
}

Finally, we launch all three processes, boat, secureBoat, and check, to perform the overall
simulation:

D6.1 - Deliverable 6.1: A General Systems Model Architecture 25/62

launch boat
launch secureBoat
hold(checkDelay); launch check

hold (runTime)
close

The evolution of the Core Gnosis abstract machine determines the observable change of
state recorded by the trace (history).

The language also allows for statements of the form forget(l, l′) and recall(l, l′), where l
and l′ are simple locations. These statements make the topology of the system dynamic, in
that processes may not be able to use the declared links at all points in time. The forget(l, l′)
statement changes the system state by dropping the link from l to l′. Note that move state-
ments taking resources from l to l′ will block when the link is thus broken. A recall(l, l′)
statement re-connects the link from l to l′. A process which is blocked on a move from l to l′

will be un-blocked when this link is recalled. For example, one may wish to consider enrich-
ing the Secure Boats example, so that the tugs kept at the Guard location are, periodically,
distrusted. This may be represented by having the link from Guard to Secure forgotten and
recalled periodically.

5. Alternative Simulation Approaches

There are many simulation and modelling tools in existence. In this section we discuss just
some of them. We begin with a quick summary of the main requirements for our modelling
language. We then discuss the alternatives before concluding this section with a summary.

5.1 Requirements

The precise requirements of any modelling language depend upon its intended uses. Our
past experience and the domain examples proposed for Seconomics lead us to the require-
ments presented in this section.

The purpose of the modelling language is to enable policy-makers to determine their
preferences with respect to their possible policy choices. Thus:

The modelling language must be able to represent policies and to express pref-
erences between policies.

The disciplined representation of policy is an important research topic to be addressed in this
project, although past experience has shown that policy certainly can be represented in both
Core Gnosis and MATLAB. However, preferences are often discovered after the behavioural
response of the wider system to policies is known. We therefore turn to such behavioural
aspects next before returning to a more detailed description of preference.

Security is a multi-scale problem: on the one-hand, note that the smallest scale vul-
nerability in a large system can be transformed into a security threat to the entire system
(for example, an exploitation of a code-level vulnerability in an industial control system); on

D6.1 - Deliverable 6.1: A General Systems Model Architecture 26/62

the other-hand, the properties of interest to decision- and policy-makers are often at the
aggregate level (for example, behaviours of large populations of users or markets may de-
termine the view of risk in a cost-benefit analysis). Moreover — and this may not always
be appreciated — macro-scale factors (such as the prevalence of one operating system
near-monoculture) may affect the micro-scale security factors that matter (since such macro-
factors will influence the decisions of attackers to search for particular vulnerabilities). Thus
a requirement is:

The modelling language must be able to represent systems across both micro-
and macro-scales.

It is evidently not possible to represent large systems in complete detail. It is also not desir-
able so to do, for many well-known reasons. Thus, a further requirement is:

The modelling language must make it possible represent systems at multiple lev-
els of abstraction.

The systems that will be modelled will typically have rich dynamics. Thus:

The modelling language must be able to express the dynamics of the system,
and an executable tool must allow for effective exploration of evolution under such
dynamics.

As discussed in earlier sections, the pragmatics of the disciplined construction of sys-
tems models requires that the structure of systems (e.g. location and resource) be directly
representable, rather than merely encodable. Specifically:

Appropriate structural features must be representable in the modelling language.

Modelled systems often contain components that evolve or behave in a way that is best
described probabilistically; moreover, this is also true of the system environment. Hence:

The modelling language must enable the expression of stochastic events.

Returning now to the issue of the representation of preference, one of the most common
ways that this is done is to evaluate (distributions over) utility values accumulated over the
course of model runs for given policy and system configurations. Furthermore, as well as
utility expressed over models, models may also contain agents with preferences expressed
in terms of utilitites. In a Cournot-Stackelberg (or other game-theoretic) framework, the
policy-makers preferences and choices will also be internal to models. Therefore:

The modelling language must allow for the expression of utility, and its accumu-
lation over intermediate and final system states.

5.2 Alternative Systems

5.2.1 Traditional Applied Mathematical Systems

This class of languages is perhaps the oldest and most-widely used, in high-level form go-
ing back at least to FORTRAN, but in low-level form even further. It includes the simulation

D6.1 - Deliverable 6.1: A General Systems Model Architecture 27/62

capability of MATLAB and also Mathematica. Roughly speaking, these languages encap-
sulate the dyamics of a system by the use of equations to update a simple notion of state
given by variables bearing quantities. Thus they are particularly suited to the mechanical
implementation of traditional applied mathematical (and economic) methods. In principle,
any of these languages is as powerful as any other. MATLAB offers the advantages of wide
and well-documented functionality, high-quality visualization capabilities, but importantly the
ability to distribute models as executables.

5.2.2 Systems for Concurrent Modelling

If one cares about the modelling of situations in security where concurrency, synchrony and
logical properties of state are paramount (for example, if one needs to model detailed causes
and effects on a network during the course of a particular attack) then dedicated concurrency
modelling tools should be considered.

Systems for dealing with fine-grained concurrency simulation date back to the develop-
ment of the SIMULA language. There are now many such simulation packages in existence.
MATLAB contais a discrete event simulator with some support for concurrent modelling. This
is discussed further in Section 6.

An important offshoot of concurrent modelling languages are those grounded in Theo-
retical Computer Science, specifically process calculus. These approaches have several
principal advantages. The first is compositionality: one can build models of component sys-
tems and then combine them in set ways to give larger models. The second advantage
is that they have a formal semantics that specifies in a precise, mathematically-tractable
way the dynamics of the system. This enables a further capability, namely model-checking,
where logical properties of systems can be formally specified and verified with automated
tools. PRISM [32] and PEPA [24] both offer the above functionality, including stochastic evo-
lution. Core Gnosis also has its roots in a process calculus approach [1, 2, 4], but adds the
representation of structure to the usual dynamics.

5.3 Summary

MATLAB will be the default choice of simulation language for Seconomics WP6. Its power
and applicability to the type of models that are likely to be considered make it the most
appropriate choice. Although, fine-grained details of concurrency and formality can matter in
some models, the economic models that will be the focus in WP6 will not likely be concerned
with this abstraction level. Typically, events will be separated by probabilistic timing choices
rather than explicitly synchronized. Additional structure of models (e.g. location, resource)
can be encoded in MATLAB, as discussed in Section 6.

6. Mathematical Models to Matlab Models via Gnosis

A process modelling language such as Core Gnosis could be implemented in MATLAB.
However, this is not necessary for the present purpose, would be extremely time-consuming,
difficult to get correct, and will not be done. Instead, only models of a type and at a level of

D6.1 - Deliverable 6.1: A General Systems Model Architecture 28/62

abstraction suited to MATLAB modelling will be considered. Where appropriate, the MATLAB
models will nevertheless be structured in a way that retains some of the central commitments
of the Core Gnosis view.

The dynamics of systems will be encoded through updates to state and the logical con-
trol operations of the MATLAB language. One way that this can be done is with the Simulink
library (http://www.mathworks.co.uk/products/simulink/) which allows for a de-
gree of compositional structure in models using block-diagrams.

Simulink includes a discrete-event simulation language called SimEvents (http://www.
mathworks.co.uk/products/simevents/). This allows for concurrently evolving enti-
ties, discretely evolving with stochastic events, and shared resources to allow for blocking of
entity evolution. The representation of concurrency is through the use of a shared event list
to schedule the next event issued by processes, and communication between processes via
such events [33].

The treatment of location in Core Gnosis is based on the mathematical notion of graph: a
set of nodes connected by edges. It would be easy to program tools to support such uses of
graphs directly MATLAB, but graphs are already supported within the Matlab Symbolic Math
Toolbox (http://www.mathworks.co.uk/help/symbolic/graph-theory.html).

In Core Gnosis resources are modelled as particular kinds of variable. There are two
important things to note about such variables: they collectively form an easily comprehen-
sible part of the system state; they are subject to clear disciplines regarding their use and
update. The first point will generally be true of variables in many modelling tools (including
MATLAB, but excluding certain process modelling languages). The disciplined variables that
Core Gnosis use include ‘shares’, ‘bins’, ‘budgets’ and ‘tallies’. In particular, shares can be
sited at locations and move between them. Resources can easily be viewed as located by
simply having a separate resource at each location. The mobility of resources is another
matter. Should this prove to be needed, it seems that it will have to be done in an ad-hoc
way using unstructured MATLAB variables.

7. An Architectural Methodology for Organizational Secu-
rity Models

In this section, drawing directly upon [34, 35], we introduce a methodology for structuring
systems security models. A key idea underlying this methodology is to draw a clear distinc-
tion between declarative and operational security concepts. A structure called a Security
Architecture is introduced that allows one to describe hierarchies of organizational rôles,
declarative security objectives for those rôles, and operational components used to achieve
those goals. We consider how methods from economics can be used to inform design
choices.

The methodology was developed in the context of information security, and the discussion
below motivates it in these terms. However, the same methodology can easily be applied
to other security modelling situations, as can easily be seen from the example given below
concerning airport security.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 29/62

http://www.mathworks.co.uk/products/simulink/
http://www.mathworks.co.uk/products/simevents/
http://www.mathworks.co.uk/products/simevents/
http://www.mathworks.co.uk/help/symbolic/graph-theory.html

7.1 The Basic Concepts of Information Security

The fundamental concepts of information security are confidentiality, integrity, and availability
(CIA). Alongside these notions sits the concept of privacy. We are not concerned with privacy
here.

It is, however, commonplace in the literature to find observations that CIA does not pro-
vide an adequate basis for practical, operational, information assurance. Typically, it is
suggested to extend CIA with various additional concepts, such as ‘authentication’, ‘non-
repudia(tion)(bility)’, ‘control’, or even ‘utility’. Perhaps the leading, most developed example
is the ‘Parkerian Hexad’ (as developed in Parker’s elegant account of security concepts [36]),
in which to

• confidentiality,

• integrity, and

• availability

are added

• possession,

• authenticity, and

• utility.

These concepts, which it has been argued are ‘atomic’ and ‘non-overlapping’ are, indeed,
all conceptually valuable and pragmatically useful in the understanding and practice of infor-
mation security.

A similar collection of concepts may be found, for example, in the ‘ISO/IEC 7498-2: In-
formation Technology—Open Systems Interconnection—Basic Reference Model—Part 2:
Security Architecture’, which identifies identification and authentication, access control, data
integrity, data confidentiality, data availability, auditability, and non-repudiation.

In the Parkerian Hexad and the ISO/IEC Reference Model, however, as in similar tax-
onomies, the proposed extensions to CIA constitute, in the Aristotelian sense, category er-
rors. They confuse the (declarative) objectives of information security operations with the
(operational) mechanisms deployed in order to achieve those objectives. For one example,
access control is an operational notion used, for example, to restrict the availability of a ser-
vice to a given group of users. For another, ‘auditability’ , ‘authenticity’, and ‘non-repudiation’
are properties — of the kind that might be expressed logically, as discussed below (in 3) — of
the underlying systems security architecture. For yet more, possession seems to be a notion
that is derivable (at least according to Parker’s definition) from confidentiality, integrity, and
availability, whilst utility is, evidently, not a security concept, but rather an economic concept
that is useful in the security context

This situation is problematic not only from the conceptual point of view — because declar-
ative and operational concepts must be treated differently in order to understand how objec-
tives are delivered (or not) by making (in)appropriate implementation choices — but also
from the economic and management points of view — because we are concerned with how
the objectives of information security measures trade off against one another.

There are also evident redundancies — as discussed in, for example, [36] — though this
issue is not our primary concern here.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 30/62

7.2 An Economic View

Utility is an economic concept. Utility theory (see, for example, [37]), particularly as devel-
oped in the contexts of macroeconomics and financial economics, provides a highly expres-
sive framework for representing the preferences of the managers of a system.

For example (e.g., [38]), in the macroeconomic management of market economies, cen-
tral banks play a key rôle. The managers of a central bank are given, by their national
governments, targets for certain key economic indicators, such as unemployment (ut) and
inflation (πt) at time t (time can be either discrete or continuous here). Their task is to set a
(e.g., monthly) sequence of controls, such as their base (interest) rates (it) so that the key
indicators are sufficiently close to their targets, ut and πt, respectively. Typically, using this
example, the managers’ policy is expressed as a utility function

Ut = w1f1(ut − ut) + w2f2(πt − πt) (1)

together with system equations, ut = s1(it) and πt = s2(it), expressing the dependency
(among other things) of u and π on interest rates in terms of functions s1 and s2 that describe
the (macro) dynamics of the economy. Two key components of this set-up are the following:

• The weights w1 and w2 (typically, values between 0 and 1) that express the managers’
preference between the components of the utility function — that is, which they care
about more; and

• The functions f1 and f2 that express how utility depends on deviation from target.
A simple version of this set-up would take the fis to be quadratic. Quadratics con-
veniently express diminishing marginal returns as the indicators approach target, but
make utility symmetric around target. More realistically, Linex functions [39, 40, 38],
usually expressed in the form g(z) = (exp(αz) − αz − 1)/α2 are used to capture a
degree of asymmetry that is parametrized by α.

The managers’ task is to set a sequence of interest rates it such that the expected utility,
E[Ut], remains within an acceptable range, as ut and πt vary, and trade-off against each
other, as the sequence of rates it evolves. In general, there can of course be as many
components as required in a utility function.

This economic framework can be deployed in the context of information security (see, for
example, [11, 12, 13, 41]), where concepts uch as confidentiality, integrity, and availability
that lie within competing declarative categories can be seen to trade-off against one another
as the relevant controls, such as system configurations or investments in people, process,
and technology system configurations, vary:

• The organization that deploys information security measures exists in an economic
and/or regulatory environment. This environment places constraints upon the systems
and security architectures available to the organization’s managers.

• The managers formulate a utility function that expresses their policy preferences, which
will depend upon the nature of their organization. For example, state intelligence
agencies and online retailers will have quite different priorities among confidentiality,
integrity, and availability; see, for example, [12].

D6.1 - Deliverable 6.1: A General Systems Model Architecture 31/62

• In a highly complex situation, such as a security architecture, it will typically not be
possible to formulate system equations (in terms of functions s1 and s2) in the way
that is usually possible in, for example, macroeconomic modelling. Typically, though,
the key control variables, such as system interconnectivity or investment in various
aspects (people, process, and technology) of security operations, will be identifiable.

• Instead, however, an executable system model, such as Core Gnosis [1] as described
in Section 4, using the key control variables, can be used in order to simulate the
dynamics of the system and the utility function.

As an example, consider the management of an airport’s security process, see Deliver-
able D2.3 for WP2 requirements on airport security.A key aspect of this is checking passen-
gers and their bags for acceptability to fly. A passenger, with luggage, must navigate from
the concourse of an airport’s terminal building to a seat on an aircraft; that is, it is an access
control process that is predicated on maintaining an integrity property of aircraft, and this
is achieved by maintaining that property for passengers and their baggage. This integrity
property trades-off against other concerns, principally costs, incurred in providing security
staff and equipment, and service availability.

A picture of the access control system is given in Figure 1. Note how location and re-
source are used to structure and control the process, and recall that these were identified in
Section 2.1 as key modelling components.

Figure 1: Airport Locations

Departure Airport
Public Side Secure Area

Air Side

Runway

Check In

Security
Checkpoint

Passport Control

Routing

X-Ray Station

Conveyor Belt

Hold

Cabin

Tarmac

Plane

The passenger is subject to a range of security controls that are intended to ensure a
certain integrity property — roughly, that certain dangerous or substances and objects are
not present — of the aircraft. The manager of the security process has decided that, in order
to access the aircraft, passengers must submit to the security process and must therefore
sacrifice their confidentiality — the bags will be searched, there will be body searches. Thus

D6.1 - Deliverable 6.1: A General Systems Model Architecture 32/62

the manager has given a preference weighting of 0 to passengers’ confidentiality. There are,
however, non-trivial trade-offs with cost and availability:

• Cost. The effectiveness of the integrity might be improved by, for example, introducing
more expensive scanning devices that are able to detect more things, more reliably.
The efficiency of the integrity check might be improved by introducing more scanning
devices and more security staff, thereby facilitating greater parallelism in the security
process;

• Availability. An important measure of availability2 of access to the aircraft is the length
of time that must be allocated for passengers to navigate the airport’s security proce-
dures.

We can, of course, consider very different points of view. From the point of view of a
smuggler, the utility function might look rather different. She might submit to the process
without deciding to sacrifice her confidentiality — her preference weighting for confidentiality
is not 0, but rather is something close to 1 — hoping to conceal her contraband by some
means. We will not develop this part of our example here because it is not concerned with
the integrity property of the aircraft. Rather, it is concerned with an integrity property of an
international boundary (be it outgoing or incoming), and, in practice, may or may not be
considered within the security process.

7.3 Modelling the Security Architecture

We introduce our conceptual account of security architectures, its purpose being to give
a structured, conceptual description of the components of a security architecture that can
naturally be integrated with the natural structure of executable system models.

There are two key layers in our representation of a security system, the Framework layer
and the Instantiation layer. There is a commonality of organization between these layers
although they represent conceptually different parts of the model. Both layers are orga-
nized into a hierarchy of rôles with each rôle sub-divided into dependencies, priorities, and
preferences.

The hierarchy contains all the relevant rôles that make up the organization being mod-
elled. Rôles are ordered by their ability to influence the security architecture of the system.
In other words, they are classified by the toolbox that is available to them for modifying se-
curity objects (that characterize security tasks, defined below). The system accepts multiple
and partial orderings. For example, the top level of the model might represent the strategic
decision-makers of the organization, such as an airport’s security managers or their regu-
lators, while the bottom level might represent an individual employee or user of the organi-
zation, such as an airport’s check-in staff or a passenger navigating airport security. The
rôles represent the possible positions individuals can adopt in the hierarchy. They do not
represent any entity themselves. They are instead populated by actors, which are another
component in system and are described below.

Each hierarchy level contains three sections representing the dependencies, priorities
and preferences of that level. For our purposes we define the terms as follows:

2Recall that one reasonable definition of availability is along the lines of ‘accessibility of service when re-
quired’ [36].

D6.1 - Deliverable 6.1: A General Systems Model Architecture 33/62

• Dependencies (strong requirement): Externally enforced requirements that actors pop-
ulating the rôle must meet all of in order to function within the model. Actors occupying
this rôle have no choice in whether or not (and possibly even how) to meet these re-
quirements regardless of how resource inefficient they are. Dependencies will often be
informed by the environment within which the hierarchy exists;

• Priorities (weak requirement): Externally supplied tasks, as many as possible of which
should be met by Actors in the associated rôle. Actors have some choice in which
priorities to meet and how they are approached. In a limited resource environment,
Actors can select the most resource efficient priorities and methods first. Priorities will
often be informed by the rôle that the level represents;

• Preferences: Actor-generated tasks that the Actor has decided are worth achieving
from its own perspective. These can be generated by the Actor’s inclusion in other
hierarchies.

Dependencies, priorities, and preferences (DPP) and the hierarchy of rôles structure are
found in both the framework layer and the instantiation layer.

The form and construction of the security architecture is illustrated in Figure 2.
The key components of this diagram are the following:

• The hierarchy of rôles (far left). Rôles capture the relevant security management struc-
ture of the organization being modelled. They are ordered by their ability to influence
the security architecture of the system;

• The Framework Layer (centre left). The Framework Layer is constructed top-down.
Dependencies and priorities at a given level in the hierarchy induce dependencies and
priorities at lower levels;

• Security Objects (trees within Framework Layer). Security Objects represent the se-
curity tasks which, if completed, will satisfy the dependencies and priorities with which
they are associated;

• The Instantiation Layer (centre right). The Instantiation Layer is constructed bottom-
up, starting where the Framework Layer finishes (see below). The Instantiation Layer
is a populated image of the Framework Layer;

• Security Components (nodes of trees within Instantiation Layer). Security Components
perform the operational checks required in order to deliver Security Objects. They do
so by return boolean values up the tree, towards the root. They enter the architecture
when the Framework is instantiated;

• Actors (far right). Actors occupy rôles. They insert preferences into the hierarchy of
rôles at the Instantiation Layer.

A key point here concerns the way in which the dependencies, priorities, and preferences in
model are intimately related to the declarative security concepts. For example, given con-
fidentiality, integrity, and availability as the concerns, the dependencies, priorities — in the
Framework Layer — express the policies required to implement the managers’ preferences

D6.1 - Deliverable 6.1: A General Systems Model Architecture 34/62

Figure 2: Security Architecture: Framework and Instantiation

1

2

3

n

n+1

Rôle Dependency Priority Dependency Priority Pref.

Framework Layer Instantiation Layer

…

D6.1 - Deliverable 6.1: A General Systems Model Architecture 35/62

as represent in their chosen utility function for the organization. Specifically, given a utility
function with definiens of the form

w1f1(C − C) + w2f2(I − I) + w3f3(A− A) + w4f4(K −K)

where C, I, and A denote suitable instances and/or measures (see, for example, [12]) of
confidentiality. integrity, and availability, respectively, and where K denotes cost or invest-
ment, dependencies will have very high weightings, with very little tolerance for deviation
from target, and priorities slightly lower weightings. Preferences (see below) have weight-
ings that lower still, and may have high tolerance for deviation from target.

The form and function of the Framework and Instantiation Layers, and the interaction
between them, will now be discussed in more detail.

7.3.1 The Framework Layer

The Framework Layer represents the underlying structure of the system. It is static (in the
sense that the model does not run on this layer) and declarative but informs the construction
of the more operational Instantiation Layer. A completed Framework Layer consists in a
hierarchy of rôles (see, for example, [?]) with dependencies and priorities assigned to them.
As preferences are derived from actors (see below), they do not appear in this layer because
actors appear in the Instantiation Layer. The dependencies and priorities will each have a
Security Object (SO) assigned to them. SOs are a unique component of the Framework
Layer and represent the security tasks which, if completed, will satisfy the dependencies
and priorities with which they are associated.

For example, in the setting of the running example of airport security that we have be-
gun to introduce, examples of Security Objects include the examining of checked luggage,
the checking of hand luggage and passengers — to identify and so remove any prohibited
contents — and the tracking of the relationship between passengers and checked luggage.
These examples are developed below.

SOs are unconstrained with respect to their location within the hierarchy. SOs can only
exist in one hierarchy and never populate multiple hierarchies. This is a key difference be-
tween Actors and SOs. One of the aims of this formulation is to improve the communication
between different stakeholders and eliminate the duplication caused by the failure to un-
derstand the connectedness of security concepts between levels. In practice, that means
a typical SO will exist at multiple levels and multiple sections (dependency, priority) in the
Framework. It will commonly be the case that an SO created at a higher level will transition
through and connect (or create) priorities and dependencies lower in the framework.

For the more mathematically minded reader, there are many choices of formalization of
SO. Our working choice for the purposes of this section is, roughly speaking, the following:

• SOs are characterized by (directed) and/or forests3 4 (illustrated in Figure 2 by the
red/orange trees in the Framework Layer) associated with dependencies and priorities;

• Internal nodes of the trees are labelled with boolean variables, each associated with a
dependency or priority, and truth conditions are inherited upwards (towards the root);

3A (directed) forest is a disjoint union of (directed) and/or trees.
4A forest is required because a given SO may, in general, derive from more than one dependency or priority.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 36/62

• Leaves are nodes for which a boolean instantiation (all components for conjunctions,
one component for disjunctions) can be determined at the next level down in the hier-
archy of rôles.

The Framework is populated with dependencies, priorities, and security objects through
an iterative process that requires design input from an expert source. The criteria under
which security objects terminate and by which the Framework can be said to be complete is
the same for all frameworks created in this way.

As indicated above, dependencies and priorities are externally generated. In practice, a
hierarchy of rôles will not encompass all possible contributors to the framework and will have
been bounded at some sensible level. In our example, we have not represented any rôle
higher than the airport security manager in our hierarchy. The creation and bounding of the
hierarchy of rôles is the first step in creating a framework layer. To populate a framework, it is
necessary to determine the dependencies and/or priorities that the top rôle in the hierarchy
will inherit from sources external to the hierarchy. At this stage, we will have a complete
hierarchy of rôles that is empty of dependencies and priorities except for the top layer. The
next step is to assign security objects to these dependencies and priorities that will allow
them to be fulfilled; see Table 1.

Table 1: SOs Stage 1

Rôle Dependencies Security Objects

Airport Security Man-
ager

Ensure no prohibited
materials transit the
airport

Scan checked lug-
gage

Scan hand luggage
and passengers

Track relationship
between passengers
and checked luggage

At this point the iterative process begins. The construction of a framework always pro-
ceeds from top to bottom. At each iteration the following are checked:

• Are there any dependencies or priorities without an assigned Security Object?

• Are there any unterminated Security Objects?

The construction of a Security Object terminates once it is possible to return a boolean value
from its lowest point. If this is not possible, then the Security Object must be extended to the
rôle below in the hierarchy, creating any necessary dependencies and priorities as it does
so. The dependencies and priorities created will be informed by the rôle creating them; thus,
as the SO descends through the hierarchy, it will become more detailed as the scope of the
lowers is necessarily more limited. In our example above none of the security objects can
return a value and thus need to be extended. Let us extend the ‘scan hand luggage’ SO. The
following (Table 2) would be the result of two iterations, one would generate the dependency

D6.1 - Deliverable 6.1: A General Systems Model Architecture 37/62

Table 2: SOs Stage 2

Rôle Dependencies Security Objects

Airport Security Man-
ager

Ensure no prohibited
materials transit the
airport

Scan checked lug-
gage

Scan hand luggage
and passengers

Track relationship
between passengers
and checked luggage

Airport Security Staff Examine all passen-
gers and luggage
passing through
security checkpoint

Identify contents of
hand luggage and
verify permitted

from the SO above, the second would find a dependency without an assigned SO and create
one:

Note, for example, that the SO ‘scan and luggage and passengers’ corresponds to a tree
(red/orange in Figure 2) in the Framework Layer.

At this point the SO can return a boolean (true/false that the contents of the bag are
permitted) and will terminate. The framework is not yet complete, however, as there are still
unterminated SOs at the manager layer. Iterating in this fashion would also close those at a
suitable point. The final step in a SO is always a compliance step which indicates that at this
level and below the rôles in the hierarchy simply comply with the SO and are not involved in
its execution. This would add the following line (Table 3) to the framework:

Table 3: SOs Stage 3

Rôle Dependencies Security Objects

Passenger Comply with SO

Once the framework is complete under the criteria outlined above the SOs will form a
Boolean forest with the leaves connecting each dependency and priority in the framework.
At this point we can begin to construct the instantiation layer.

7.3.2 The Instantiation Layer

Whereas the framework layer is static and declarative the instantiation layer is dynamic and
operational. Two new parts of the architecture are added during instantiation, Security Com-
ponents (SC) and Actors. Actors will be discussed in more detail below; for now it is sufficient
to know that they occupy rôles and insert preferences into the hierarchy of rôles at the Instan-
tiation Layer. Security components combine together to form the operational counterparts of

D6.1 - Deliverable 6.1: A General Systems Model Architecture 38/62

security objects.
The instantiation layer needs building in the same way that the framework layer did. Again

an iterative process is adopted with certain termination criteria. The key difference here is
that this layer is built bottom up. SCs lay out the processes and resources needed to perform
the boolean checks specified in corresponding SOs. SCs start at the final ‘compliance’ layer
of the SO. Once the processes and resources required at this level are put in place we check
to see if they are sufficient to complete the SO. If yes, then the SC terminates. If not then we
move up to the rôle above and add additional processes and resources as needed. Again,
this process repeats until all SCs are closed. At this point, the Instantiation layer is complete.

A little more formally, corresponding to the slightly more formal view of SOs sketched
above, we can describe how SCs are combined to instantiate SOs as follows:

• SCs are combined according to the and/or forest determined by the SO that they in-
stantiate;

• Each SC implements a checking process that applies to Actors at the level below;

• SCs return boolean values that instantiate internal nodes of the corresponding SO.

Working through our example again we start at the passenger level and work upward until
we have sufficient processes and resources in place to return a boolean for the statement
‘the passenger’s possessions and luggage are permitted. The finished security component
in this case would be as follows (Table 4):

In Figure 2, the SCs correspond to the green/yellow nodes in the Instantiation Layer
Note that whereas the SO terminated in a ‘compliance’ level the SC terminates at a

‘provision’ level when it reaches a rôle that can sufficiently provide the resources required to
execute the SC without recourse to a higher rôle.

The final component of the instantiation layer (and the model) are Actors. Actors exist
independently from any single security hierarchy. They represent entities that transition be-
tween hierarchies, this being the key difference between Actors and SOs. They can interact
with any and all hierarchies present, simultaneously if necessary. Actors exist solely as a
collection of tags corresponding to their attributes. When an Actor interacts with a hierarchy
and seeks to populate one of its rôles, the hierarchy examines the Actor’s tags (some or
all of which may be unreadable to the hierarchy). It assigns the Actor to a rôle based on
its tags and clones a copy of that rôle for the Actor to inhabit for the duration of its lifecycle
in that system. This clone inherits the relevant dependencies and priorities of the rôle. Its
preferences are obtained by interrogating the Actor’s tag-cloud. Some Actors will have no
preferences. Such Actors represent items such as inanimate objects (e.g., a passenger’s
bags in the airport example) or data stores (e.g., a baggage handling label in the airport ex-
ample) that can be passed between hierarchies (the departure and destination airports will
have separate security systems and this will be considered separate hierarchies) but have
no intentions of their own. Once a clone is created, the Actor no longer directly interacts with
the hierarchy for the duration of its lifecycle.

The Actor clone is now a full part of the hierarchy and can interact with its associated
Security Components, updating its dependencies, priorities, and preferences as necessary.
Its actions will determine the paths and states of the hierarchy it passes through. These in
turn decided the exit point of the actor clone from the hierarchy. Each possible access point

D6.1 - Deliverable 6.1: A General Systems Model Architecture 39/62

Table 4: SCs

Rôle Dependencies Security Compo-
nents

Airport Security Man-
ager

Ensure no prohibited
materials transit the
airport

Provide resources
(X-ray machine,
metal detector,
wands)

Provide data on pro-
hibited materials for
X-ray comparison

Airport Security Staff Examine all passen-
gers and luggage
passing through
security checkpoint

Monitor X-ray ma-
chine and inspect
results for prohibited
items

Hand-search suspect
luggage

Hand-scan suspi-
cious passengers

Passenger Comply with SO Place luggage on
scanner

Walk through detec-
tor

D6.1 - Deliverable 6.1: A General Systems Model Architecture 40/62

has a set of tags associated with it that are then passed back to the core Actor to replace the
set used to interact with the hierarchy. These may be identical or contain new or changed
statuses. For example, a hierarchy designed to check the citizenship of an unknown actor
may return tags, which it did not previously possess, identifying it as a national or an illegal
alien.

The introduction of Actors adds a third dimension to the framework. Multiple actors can
exist on any one layer of the hierarchy (and, typically, the lower levels will have more actors
assigned to them). This also means that Security Objects can span multiple actors as well
as multiple levels.

8. Real options and pricing risk

Risk based approaches rely on the appropriate pricing of potential risk vectors. Asset pricing
models are becoming a more prevalent outside the finance industry for use in all manner of
applications. For instance in[17, 42] an extension of an existing quantified loss function with
diminishing marginal returns to security investment is redefined into a wait and see approach
based on the valuation of a real option to secure assets.

Asset pricing models rely on comparability of risks to well understood benchmarks (usu-
ally a broad indices of financial assets). However, for security valuation no broadly traded
financial assets are available.

A basic question is: why is it important to have a traded asset whose payoff is linked to
a level of security? The basic answer to this question is that the action of trading claims
on future levels of security processes all of the currently available information on potential
security risks.

For instance in information security, a broad index of physical or information security
incidents could be used as a benchmark. Futures contracts could be then traded for delivery
at a fixed dollar amount per unit of the index at a pre-specified date. The trading in this
contract determines the future expected levels of security risk.

Companies can then benchmark their own security risk relative to this index. This allows
for standard risk management models such as the capital asset pricing model to compute the
optimal hedging contract (or synthetic hedging contract) to indemnify their security position,
this process is called hedging and is similar to insurance. In fact the usefulness of this
approach is to allow firms to benchmark the precise value of insurance needed to indemnify
their assets and how much this insurance should cost.

One issue with regards to modelling risk with respect to information security is that se-
curity shocks are not continuous in nature, but are inherently discrete jumps. Measuring a
firms information security assets in terms of time t levels of confidentiality, C(t), availability
A(t) and integrity I(t) we can fit a modification of a standard real options model to measure
the level of investment K(t) needed to restore levels of risk to some form of optimum deter-
mined by a policy maker. In [13] the authors present a model of security risk management
for information security using a discontinuous jump model.

For a discrete event risk vector a Poisson process is reasonable way of modelling dis-
continuous jump arrivals and the log-normal is a single-tailed distribution which captures
a random variable that arises as a product positive independent random increments. Our
choices represent a simplification of reality, but we believe it is a reasonable one.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 41/62

Each security incident has a an impact on measurements of confidentiality or availability
described by Equation 2 and are encapsulated in the vector yt. Here ψ1,t and ψ2,t represent
the primitive stochastic processes driving the risk generating process. For the most part we
will assume that these are Poisson point processes with log-normal jump realizations. y1,t+∆t − y1,t

y2,t+∆t − y2,t

 =

 π1,1 π1,2

π2,1 π2,2

 ψ1,t

ψ2,t

φt (2)

The parameter vector associated with the system consists of µ1, µ2, σ2
1, σ2

2, and the corre-
lation coefficient ρ12. The matrix Π, with components, πi,j, linearly decomposes the signal
of the security event arrival to consequences for the availability and confidentiality of the
system. The time t states of confidentiality Ct and availability At — the discrete-time equiva-
lents of the continuous-time measures C(t) and A(t) — are based on a fully secure system,
[C0, A0]T. In the presence of security action, confidentiality and availability evolve according
to Equation 3:

 Ct

At

 =

 C0

A0

− f
 y1,t

y2,t

 (3)

The function f is a rescaling function to ensure that the security event information, contained
in the evaluation of the intensities (ψ1, ψ2) at t, matches the appropriate scale of confiden-
tiality and availability.

Consider a policy-maker with two instruments, a long instrument, x1(t |t0, E(yt)), which
is a regular security implementation cycle taken at evenly spaced points in the time interval
[t0, T], and set prior to t0, and a short instrument, x2 (t), a decision to take costly immediate
early security action taken within the interval t ∈ [t0, T].

At time t, the non-decreasing sequence of confidentiality and availability is as follows
(notation: |− denotes dependency and ‖ is read as ‘or’):

t′ |E(yt) ∈
[
t0, t0 + T

x1
, t0 + 2T

x1
, . . . , T

]
(4)

Ct+∆t =

Ct + ∆Ct |yt iff (t 6= t′) ‖(x2 = 0)

C̄ if t = t′

C̄ if x2 > 0

(5)

At+∆t =

At + ∆At |yt iff (t 6= t′) ‖(x2 = 0)

Ā if t = t′

Ā if x2 > 0

(6)

In the first cases of Equations 5 and 6, the system is vulnerable because security events
have occurred. Each security event maybe mitigated by the utilization of the long nor the
short instruments. All other cases denote that the system has been patched.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 42/62

The long instrument, x1, is a non-negative integer defining the number of regular patch
implementations during the planning period [t0, T]. This process is considered to be the
regular patching cycle and the associated required increases in information security capital
stock are given as

P1(x1(t)) = ν expx1 (7)

where ν is the cost of implementing each patch.5

Implementation of the short instrument, x2 (t), has two expenditure components: a fixed
component and an additional variable reflecting the extra expenditure requirements for patch-
ing either side of the regular cycle. If x2(t) = 0, then no additional expenditure is required;
that is, P2(x2(t)) = 0; otherwise, a convenient representation is given by the following equa-
tion:

P2(x2(t)) = υ + α′ (t′′ − x2)
2

+ β′ (x2 − t′)2 (8)

where t′′ is the time of the next regular patch, t′ is the timing of the previous regular patch,
and α′ and β′ are structural parameters. In the case α′ = β′ = 0, there is no additional
penalty for timing the patch outside of the regular cycle. Patching under the short instru-
ment is considered to be patching outside the regular cycle, constituting the irregular cycle:
practitioners often refer to it as ‘out-of-cycle’ patching.
P1 and P2 are the components of P that enter the system equation and leading to devi-

ations from the target level of investment K̄. Balancing the future evolution of C and A via
simulation with investment Kallows the policy maker to determine the optimal allocation of
investment.

9. Models of attack and defense with risk averse targets

The preceding model assumes that the contingent claim (investment) can be valued in a way
that the implicit option x1 versus x2 can be valued in a risk neutral or risk averse framework.
A key aspect of this work is in delineating the equilibrium risk structure for these types of
valuation models.

In this subsection we will introduce some simplifying assumptions on the systems ar-
chitecture and then produce predictions on strategic behaviour that generate the resultant
security risks, based on the concurrent measures of the security performance of the assets.

The previous approach is extremely helpful in pricing risks. However, if is fundamentally
free of any structure in terms of choices of agents in the economic system and the mecha-
nism that generates risks.

9.1 A Policy Model with Insurance

This example provides the basic components for any risk model involving antagonists in
a security game. The model is general i.e. it can be calibrated to any number of targets
and attackers acting strategically and the equilibrium conditions are easily expressed and
analyzed either analytically or via simulation approaches.

5For x1 = 0, we define P1(x1) = 0.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 43/62

The Agents

We determine a single social planner/policy maker (we interchange between these terms in
this context, for public policy contexts differentiation is non-trivial) who decides constraints
on Θ. The ‘information security market’, is an attack defense game with the following repre-
sentative agents:

• Attackers — Agents wishing to cause damage to targets.

• Targets (the potentially insured) — Firms in an economic system (the market) assume
to be risk averse.

• Insurers - provide loss adjustments to targets in the event of successful attacks.

Different numbers of attackers may attack particular targets. Let nAi denote the number
of attackers which attack target i. We consider the case where attackers can observe the
overall level of vulnerability for the population of targets but not the degree of vulnerability
of any particular target. In this case, there is no reason for an attacker to attack one tar-
get instead of another. Or suppose, for some other reason, that each attacker directs his
or her attack at a randomly chosen target. We further approximate a random assignment
of attackers to targets by introducing the simplifying assumption that the NA attackers are
spread uniformly over the NT targets. In this case, nAi = nA = NA/NT for all i. In this case,
nAi = NA/NT .

Let σi = σi(xi, nAi) denote the probability that one or more attacks mounted against target
i are successful. The probability σi depends on both the level of defensive expenditure
by target i and the number of attacks mounted against target i. We make the following
assumptions on σi(x, n). First, we posit that ∂σi/∂n > 0, so that an increase in the number
of attackers attacking a target increases the probability that at least one attack is successful
for all levels of defensive expenditure xi and any number of attackers nAi. Second, we posit
that ∂σi/∂x < 0 so that an increase in the defensive expenditure of a target reduces the
probability that at least one attack is successful. Finally, we assume that ∂2σi/∂x

2 > 0, at
least for large enough values of x. This last assumption implies that the marginal returns to
defensive expenditure are decreasing, at least for large enough values of x.

9.2 Attacking Targets and Levels of Defensive Expenditure

The incentives to mount an attack are determined by cost-benefit considerations. Let Ri(nAi)
denote the expected monetary reward per attacker obtained by each one of the nAi attackers
who attack target i when one or more of these attacks turns out to be successful.

We assume that ∂Ri(n)/∂n ≤ 0 to allow for the possibility that competition among attack-
ers may lower the expected reward per attacker. In order to highlight the effects of compe-
tition among attackers, we consider, in most of this paper, a version of the model where the
“first winner takes all.”In this case, the first attacker who mounts a successful attack against
target i receives the reward Ri, where Ri is a positive constant. All other attackers mounting
attacks against target i receive nothing.

If each attacker has an equal chance of being the one to make the first successful attack,
then the probability that a given attacker is the one to obtain the reward from “success” is

D6.1 - Deliverable 6.1: A General Systems Model Architecture 44/62

simply 1/nAi and Ri(nAi) = Ri/nAi. The competition among attackers is particularly sharp in
this framework.

We suppose that attackers are risk neutral and wish to maximize their expected net re-
ward from an attack. The expected net reward which an attacker obtains from attacking
target i is given by the following expression.

σi(xi, nAi)Ri(nAi) − CA. (9)

We normalize the expected net reward which a potential attacker obtains by not mounting
attacks to 0.

In equilibrium, therefore, the number of attackers per target, n∗A, is given by the following
equation:

1

NT

NT∑
i=1

Ri(n
∗
A)σi(xi, n

∗
A) = CA. (10)

The left-hand side of equation (2.5) denotes the expected reward to an attacker from mount-
ing attacks against the population of targets.

Let V0i denote the value of the assets at risk in a cyber-attack against target i. If one or
more successful attacks occur, target i is assumed to incur the monetary loss Li < V0i. For
simplicity, we assume that Li does not depend on the number of successful attacks. This
could be the case, for example, if a target is assumed to fix the vulnerability which exposed
it to attack once a successful attack occurs.

We suppose that target i is risk averse with attitudes toward risk that can be described
by a von Neumann-Morgenstern utility function, Ui(v), where Ui(v) is a twice-differentiable,
strictly increasing, weakly concave function.

Target i’s preference for different levels of risk and defensive expenditure is described by
the expected utility, EUi(xi, nAi), given in the following equation:

EUi(xi, nAi) = (1 − σi(xi, nAi)) U(V0i − xi)
+ σi(xi, nAi)U(V0i − xi − Li) (11)

where higher levels of expected utility correspond to more preferred outcomes. Target i’s
expected utility is a function of the target’s level of defensive expenditure and the number of
attackers that attack target i.

Of course, the expected utility also depends on various other parameters such as V0i and
Li.

As discussed previously, the quantity σi(xi, nAi), indicates the probability that one or more
successful attacks are mounted against target i. The quantity V0i − xi represents the value
of target i’s assets net of defensive expenditure when no successful attack occurs.

Similarly, V0i− xi−Li is the net value of target i’s assets after a successful attack. In the
special case where Ui(v) = v and target i is risk neutral, target i’s expected utility is simply
the expected net monetary value of its assets. This asserts that a risk neutral target will wish
to choose its level of defensive expenditure to minimize the expected loss: xi + σi(xi, nAi)Li.

Suppose that target i chooses the level of defensive expenditure xi to maximizeEUi(xi, nAi)
holding the number of attackers nAi fixed. It is convenient to collect the terms involving σi on
the right-hand side of equation (3.1) and rewrite that equation as follows:

EUi(xi, nAi) = Ui(V0i − xi) − σi(xi, nAi) ∆Ui (12)

D6.1 - Deliverable 6.1: A General Systems Model Architecture 45/62

where ∆Ui is given by

∆Ui = Ui(V0i − xi) − Ui(V0i − xi − Li). (13)

Which indicates that ∆Ui can be interpreted as the loss to target i when a successful attack
occurs measured in terms of utility rather than money.

Suppose that the value of xi which maximizes EUi(xi, nAi) is given by the usual first-order
condition: ∂EUi/∂xi = 0. The first-order condition can be written as follows.

∂[Ui(V0i − xi)]/∂xi + σi(xi, nAi) ∂[∆Ui]/∂xi = − ∂[σi(xi, nAi)]/∂xi∆Ui. (14)

The left-hand sideis the cost in terms of utility of a marginal increase in defensive expen-
diture. The right-hand side is the marginal utility gain from a small increase in defensive
expenditure due to the reduction in the expected loss from an attack.

This set-up restates the usual rule that defensive expenditure should be increased until
the marginal cost of an additional unit is equal to the marginal gain.

We follow common practice in the economic literature and model this outcome as the
Nash equilibrium of a noncooperative game. In a Nash equilibrium each player’s choice of
strategy must be optimal given the player’s beliefs about the strategies of the other players.

In addition, the beliefs of each player must be consistent with the actual strategies used
by the other players. When all targets and attackers are identical, it is plausible to restrict
attention to symmetric equilibria.

In a symmetric Nash equilibrium
(
xNI , nNIA

)
each target i selects the same level of defen-

sive expenditure xNI so that xNI solves

max
xi

EUi(xi, n
NI
A)

and the number of attackers per target nNIA is determined by the free entry condition

R(nA)σ(xNI , nA) = CA.

Note that in equilibrium both attackers and targets correctly forecast the choices of other
players.

We suppose that the policy maker’s preferences regarding the risks of cyber-attacks are
described by a von Neumann-Morgenstern utility function:

W =

NT∑
i=1

Ui. (15)

This utility function is commonly referred to as a utilitarian social welfare function since it
consists of the sum of the utilities of the individual targets.

Order of the policy equilibrium:

• Policy maker observes unrestricted action of attackers and targets.

• Next we that the policy maker moves and all the other actors (targets and attackers)
make their choices in a second stage. All the choices in stage two are made simulta-
neously after observing the choices of the policy maker.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 46/62

9.2.1 Self-Protection with Actuarially Fair Insurance

Consider the following policy experiment: A target can choose the level of defensive expen-
diture as well as whether to purchase insurance.

An insurance contract for target i is typically described by the level of coverage, Qi, which
specifies the amount paid to target i in the event of a loss, and the premium, Πi(Qi), which
specifies the amount that target i must pay for the level of coverage Qi. The premium is paid
whether or not a loss occurs.

If target i purchases a general insurance contract specified by the variablesQi and Πi(Qi)
and chooses a level of defensive expenditure xi then target i’s expected utility is given by the
following equation when the number of attackers for target i is nAi.

EUi(xi, Qi,Πi(Qi), nAi) =

(1 − σi(xi, nAi))U(V0i − xi − Πi(Qi)) +

σi(xi, nAi) U(V0i − xi − Πi(Qi)− Li +Qi) . (16)

As discussed previously, the quantity σi(xi, nAi) represents the probability that target i
incurs a loss from an attack. The quantity σi therefore also represents the probability that an
insurer who insures target i for a level of coverage Qi will pay out that amount.

Hence, the net expected payment that the insurer obtains from target i is: Πi(Qi) −
σi(xi, nAi)Qi. The price πi = σi(xi, nAi) is the lowest price per unit of coverage that can be
charged to target i for which the premium will cover the expected payout in the event of a
loss. In the economic literature on insurance, the provision of insurance coverage at this
price is commonly referred to as actuarially fair insurance.

The provision of actuarially fair insurance requires that the price per unit of coverage,
πi, and, hence, the premium, Πi, paid by target i depends on target i’s level of defensive
expenditure, xi. For this to be the case, the insurer must be able to observe the value of xi.

In this paper, we assume that the insurer can costlessly observe the level of xi. It is
sufficient that the level of xi can be verified after a successful attack has taken place.

In this case, an insurer can set the premium based on target i’s statements about xi and
refuse to pay if target i’s stated level of defensive expenditure differs from the actual level of
expenditure.

In the case of actuarially fair insurance, equation (4.2) reduces to

EUi(xi, Qi, nAi) =

(1 − σi(xi, nAi)) U(V0i − xi − σiQi)

+ σi(xi, nAi) U(V0i − xi − σiQi − Li +Qi) . (17)

Here for simplicity we suppress the dependence of the expected utility on the premium
σi(xi, nAi)Qi, and write the expected utility for this special case as EUi(xi, Qi, nAi).

Suppose that, holding nAi fixed, target i wishes to choose xi and Qi to maximize the
expected utility EUi(xi, Qi, nAi). When target i is risk neutral, so that Ui(v) = v, it is straight-
forward to verify that the right-hand side of equation (3.7) reduces to the quantity: V0i − xi −
σi(xi, nAi)Li for all levels of Qi.

A risk neutral target is indifferent between buying insurance coverage or not even when
this coverage is provided at an actuarially fair price. Hence, Qi = 0 is optimal for a risk

D6.1 - Deliverable 6.1: A General Systems Model Architecture 47/62

neutral target and, as in the case of no insurance discussed previously, the target’s choice
of defensive expenditure mimimizes the expected monetary loss: xi + σi(xi, nAi)Li.

When Ui(v) is strictly concave, so that target i is strictly risk averse, it is convenient to
solve for target i’s optimal choice in two steps.

In step 1, we calculate the optimal level of coverage, Qi(xi), for each level of defensive
expenditure. In step 2, we calculate the optimal level of defensive expenditure xi when Qi is
set to its optimal level, that is, when Qi(xi) is substituted for Qi.

Proposition 1

A strictly risk averse target i which is offered insurance at an actuarially fair rate will always
find it optimal to choose a level of coverage equal to the full loss, that is, Qi(xi) = Li for all
values of xi and nAi. Moreover, this choice is the unique optimum when σi(xi, nAi) > 0.

Proof and Discussion of Proposition 1

Proposition 1 follows directly from Jensen’s inequality. The case where Qi(xi) = Li is com-
monly referred to as the case of full insurance, since target i is fully reimbursed for a loss.

Once target i has chosen to be fully insured, the result implies that target i will choose xi
to maximize the utility Ui(V0i − xi − σi(xi, nai)Li).

Since U(v)is an increasing function, this corresponds to choosing xi to maximize the
expected net value of target i’s assets, V0i−xi−σi(xi, nai)Li or, equivalently, to minimize the
expected monetary loss, xi + σi(xi, nai)Li�.

Not surprisingly, a strictly risk averse target who is able to offload the entire risk of a loss
by the purchase of actuarially fair insurance chooses the same level of defensive expenditure
as would be chosen by a risk neutral target.

Proposition 2

Risk averse targets who can buy actuarially fair insurance choose the same level of defensive
expenditure as would be chosen by a risk neutral target. That is, each xi will minimize the
expected monetary loss xi + σi(xi, nai)Li.

Proof and Discussion of Proposition 2

To characterize equilibrium behavior, we also need to consider attackers’ behavior. Impor-
tantly, however, the expected reward for attackers does not depend on the targets’ levels of
insurance coverage but only on the targets’ levels of defensive expenditure.

Hence, strategies which are best replies for potential attackers are described in exactly
the same way whether or not insurance is available. In particular, the equilibrium rela-
tion between the number of attackers per target and the levels of defensive expenditure,
n∗A(x1, . . . , xNT), is the same in these two cases.

Thus the equilibrium levels of defensive expenditure xFIi and the equilibrium number of
attackers per target, nFIA , satisfy the following equations:

nFIA = n∗A(xFI1 , . . . , xFINT) and xFIi = x∗∗i (nFIA) for all i� (18)

D6.1 - Deliverable 6.1: A General Systems Model Architecture 48/62

9.2.2 What does the equilibrium tell us?

When the social policy maker choices a set of constraints, in the presence of insurance she
observes a population of risk neutral targets (on average) under investing in protection. The
insurance company profit maximization condition is incentive incompatible with the outcomes
of the policy maker given the suggested policy objective function.

Monopoly insurer seeks to maintain or even increase risk to maximize its profit condi-
tion. Target cost benefit analysis results in average underinvestment in security (with over
purchasing of insurance).

Policy maker is still needed to set minimum constraints. This assumes that the insurance
company can observe the level of defensive effort, which is generally viewed as the best
condition for a perfect market in insurance. In this case strategic interactions with attackers
renders the insurance company able to control risks to maximize payoffs. Hence leading to
a perverse outcome under these conditions.

9.3 Policy Maker Utility Theory and Loss Function for Vulnerability
Management

Our first goal is to orientate the vulnerability management problem in an expected utility-
maximization framework. We seek to construct a objective function, whose solution at the
maximum is equivalent to the expected utility maximization condition. We state the policy-
maker’s objective function as

E (U (t, T)) , max
K(t)

T∫
t

e−βtu (x(t);K(t)) dP (ω (t)) (19)

where

• T is the terminal time,

• K(t) is a choice of investment function,

• x(t) = {x1, . . . , xn} is a n-vector of real-valued system attributes that is stochastic,
because of threats, defined over the probability space (Ω,F ,P) [43],

• u(x(t);K(t)) is an instantaneous real-valued twice-differentiable utility function over the
system attributes x, with exogenous parameters the investment function, K(t),

• β is a global discount rate, and

• ω(t) ∈ Ω is an experiment in the probability space (Ω,F ,P) [43].

Here the idea is that we vary the investment function K(t) in order to maximize expected
utility at time t by choosing a future investment time t∗ ≥ t.

Equation 19 provides a general characterization of a variety investment problems. As
such, it is difficult to derive general analytic solutions and so we reduce the problem space
to a polynomial approximation of Equation 19 for which solutions can be found.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 49/62

In this section, we assume a risk-averse policy-maker. In the case of a risk-neutral policy-
maker, our analysis collapses to a polynomial approximation to the real options solution for
the investment timing problem [44].

9.4 The Power Utility Family

We explore the general problem described above in the case in which n = 2. This is the
simplest case that fully illustrates our approach. Examples of this case would include the
security attributes confidentiality and availability, and we have explored, in less generality,
the way in which these attributes trade off against each other elsewhere [12, 13]. In [12],
for example, we exogenously imposed an investment cycle on the representative firm within
the model. In contrast, in this section, we demonstrate how an investment cycle arises from
investment rigidities.

In economics and finance, the power utility family of functions is the predominant mech-
anism for defining preferences for inter-temporal decision problems. Whilst for most of our
derivation we are agnostic to choice of utility function (our interest is restricted to the ratio
of the derivatives), some discussion of the higher level of functional form is relevant and
useful for future applied work. The basic power utility construct for a consumption variable
xi ∈ {x1, x2}, suppressing the control variable K, has a partial utility function defined as

ui (xi) =
x1−γi
i

1− γi
(20)

where γi is the coefficient of relative risk aversion R, for the ith attribute. Combining the
partial utility functions with cross power utility would yield and over utility function of

u (x1, x2) =
1

1− γ1

x1−γ1
1 +

1

1− γ2

x1−γ2
2 + 2

|x1x2|1−γ12

1− γ12

(21)

Several extensions of the power utility have been proposed in the literature and several of
these innovations have useful interpretations for information security problems. From this
point onward, for ease of exposition, we shall concentrate on the partial utility functions.
Kahneman and Tversky [45] suggest the inclusion of a fixed point, or kink point, k, to dis-
criminate between aversion to risk of loss and aversion to risk of gain. The power utility
representation of this approach is

ui (xi) =

1

1−γix
1−γi
i ∀xi > k

1
1−γ̃ix

1−γ̃i
i ∀xi ≤ k

(22)

where γ̃i 6= γi. The inclusion of the fixed point adds a significant complication to the type of
optimization suggested herein as the derivatives of u(x) are now discontinuous.

An alternative augmentation is to include a utility profile of the consumption of system
attributes at some future point in time. This nesting of future utility allows for a substitution

D6.1 - Deliverable 6.1: A General Systems Model Architecture 50/62

Utility

Fixed point

xiL id iLoss side Gain side

Figure 3: Illustration of the projection of a family of utility functions, u(xi), for a single attribute.
The markers represent the fixed points in the utility problem. The fixed points can be located
anywhere within this plane. For example, the dashed line represents a curve with a fixed
point at at positive value of xi. For our purposes, we assume the fixed point is at the origin
(the dark grey line) and that deviations from steady state are always to the left of the origin.

between current expected utility and future expected utility and has been used extensively
since first being suggested in [46]. The power utility form is compactly presented as

ui (xi(t)) = (1− ζi)x
1−γi
θi

i + ζiEt
(
u (xi(t+ ∆t))

1
θi

) θi
1−γi

(23)

where θi is the anticipated future coefficient of relative risk aversion at t + ∆t, ζi is the
inter-temporal elasticity of substitution — that is, the substitution between current and future
expected utility.

The last type utility function we have considered in our applied work is the ‘inside and
outside of habit’ utility function, suggested by [47]. This sets expected utility as being rel-
ative to a peer group represented by an index (of consumption), ξi, of the variable xi. In
our notational scheme, the power utility version of this type of utility function is (as usual,
suppressing K(t)) defined as

ui (xi) =

(
xiξ
−1
i

)1−γ

1− γ
(24)

There are obvious circumstances where each of these definitions of preferences will be
appropriate. Augmentations to cater for non-zero cross products (i.e., supermodularity or
submodularity) are also relatively trivial. For instance, fixed points are common in many
aspects of information security: in particular, on the loss side — essentially, improvements
over targets are relatively under rewarded. Figure 3 outlines an example of this structure.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 51/62

9.5 The Policy-maker’s Problem

We begin with a quick review of several key results for properties of utility functions and in
particular the structure of risk aversion. Absolute risk aversion (A) in two-variable (i.e., n = 2)
multi-attribute decision problems is defined as follows:

A (x1, ·) =
u′′x1 (x1, ·)
u′x1 (x1, ·)

A (·, x2) =
u′′x2 (·, x2)

u′x2 (·, x2)
(25)

where we we suppress in the notation the exogenous parameter, K(t). This is then simply
mapped to a relative risk aversion (R) context

R (x1, ·) =
−γx1u′′x1 (x1, ·)
u′x1 (x1, ·)

< (·, x2) =
−γx2u′′x2 (·, x2)

u′x2 (·, x2)
(26)

where γx1 and γx2 are the coefficients of relative risk-aversion (i.e., the marginal rate of
change in risk-aversion with respect to u(·)) for each of the system attributes.

Both A and R are useful tools in summarizing the properties of specific utility functions:
in addition to the risk aversion properties, the cross products for the attributes are useful in
elucidating the preference structure. In the bivariate context, there are three main combina-
tions. Consider the following decomposition

u (x1, x2) = u1 (x1) + u2 (x2) + u12 (x1, x2) (27)

where u(x1) and u(x2) are the partial utility functions with respect to system attributes x1

and x2 and u12 (x1, x2) is the joint utility adjustment. In the general form of our modelling
framework we maintain the general assumption that u12 (x1, x2) 6= 0,∀ {x1, x2} ∈ R2. For our
final analytic solutions, however, we have assumed separable additivity ; that is,

u′′x1,x2 (x1, ·) = 0 ∀x2 u′′x1,x2 (·, x2) = 0 ∀x1 (28)

The contrasting assumptions that maybe made on the shape of the multi-attribute utility
function are supermodularity whereby

u′′x1,x2 (x1, ·) > 0 ∀x2 u′′x1,x2 (·, x2) > 0 ∀x1 (29)

and submodularity whereby

u′′x1,x2 (x1, ·) < 0 ∀x2 u′′x1,x2 (·, x2) < 0 ∀x1 (30)

Discussion of the appropriate application of these properties is usually driven by game-
theoretic models of incentives. For instance, most problems can be treated as separably
additive, and as such the attributes rolled in a single linear function. However, in the au-
thors’ experience of working with industry and government, compound attacks on multiple
system attributes are often more damaging than attacks (of similar component-wise mag-
nitude) that occur at different times. In this case, utility functions incorporating a degree of
supermodularity would be most appropriate for describing policy-maker preferences. Cases
of submodular preferences are much rarer, although not unheard of. For instance, in a con-
fidentiality, integrity, and availability (CIA) framework, a distributed denial of service (DDOS)
attack mixed with a breach of confidentiality could, for certain institutions such as retailers,
be understood as being submodular: to some extent, the DDOS mitigates the effective-
ness of the confidentiality attack as the system’s availability (to the confidentiality attacker)
is compromised.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 52/62

9.6 Decision Support

For simplicity of exposition, we now simplify the decision under uncertainty problem to a
policy maker choosing a forward looking investment profile from an initial time t0; that is,
at a point where no existing vulnerabilities are present. The resulting expected timing of
investment t∗ > t0 is the ex-ante expected amplitude of the investment cycle. Future work
will address the ‘steady-state’ equilibrium investment horizon at time t > t0.

For a given choice of utility function u : Rn → R operating over n = 2 system attributes
— consumption variables in an economic context — the dynamic representation of the utility
function is defined from the terms of the Taylor expansion as

u (x1(t0) + ∆x1, x2(t0) + ∆x2) = u (x1(t0), x2(t0)) + (31)
(ux1 (x1(t0), x2(t0)) ∆x1 + ux2 (x1(t0), x2(t0)) ∆x2) +
1
2
ux1,x1 (x1(t0), x2(t0)) (∆x1)2 +

∆x1∆x2 (ux1,x2 (x1(t0), x2(t0))) +

ux2,x2 (x1(t0), x2(t0)) (∆x2)2

where x1(t0) and x2(t0) denote initial values, which is a valid approximation as Loistl [48]
demonstrates that under fairly mild conditions the remainder converges to zero.

Assuming that the moment generating process is fully described by its first two moments,
the following notation applies:

µx1 (t) = Et (x1(t)− x̄1) (32)
µx2 (t) = Et (x2(t)− x̄2) (33)
σx1 (t) = Et (x1(t)− x̄1)2 (34)
σx2 (t) = Et (x2(t)− x̄2)2 (35)

σx1,x2 (t) = Et (x2(t)− x̄2) (x1(t)− x̄1) (36)

where x̄1 and x̄2 are long-run targets and Et is the instantaneous expectation at time t. Sub-
stituting these into the utility function above results in the following expected utility function:

E (u (x1(t), x2(t))) = u (x1(t0), x2(t0)) + (ux1 (x1(t0), x2(t0))µx1 + ux2 (x1(t0), x2(t0))µx2) +(37)
1
2ux1,x1 (x1(t0), x2(t0))σx1 (t) + σx1,x2 (t) (ux1,x2 (x1(t0), x2(t0))) +

ux2,x2 (x1(t0), x2(t0))σx2 (t)

Assuming the existence of threats that degrade the system, induce utility losses, and
continuously compound, and which are such that, for all t, x1(t) ≥ 0 and x2(t) ≥ 0, then the
utility function will obey

u (x̄1, ·) ≥ u (x̄1 + x1(t), ·) ∀t (38)
u (·, x̄2) ≥ u (·, x̄2 + x2(t)) ∀t (39)

where · is a placeholder in the function. This results in decreasing marginal utility with

D6.1 - Deliverable 6.1: A General Systems Model Architecture 53/62

respect to loss:

∂u (x̄1, ·)
∂x1

≥ ∂u (x̄1 + x1(t), ·)
∂x1(t)

∀t (40)

∂u (·, x̄2)

∂x2

≥ ∂u (·, x̄2 + x2(t))

∂x2

∀t (41)

We define the following policy parameters, as described in Table 5:

wx1 = −ux1 (x1(t0), x2(t0)) (42)
wx2 = −ux2 (x1(t0), x2(t0)) (43)
vx1 = −2ux1,x1 (x1(t0), x2(t0)) (44)
vx1 = −2ux2,x2 (x1(t0), x2(t0)) (45)

vx1,x2 = −ux1,x2 (x1(t0), x2(t0)) (46)

Each of these has a simple interpretation, as described in Table 5.

Table 5: Policy Parameters

Parameter Description

wx1 Policy weighting applied to first system attribute

wx2 Policy weighting applied to second system attribute

vx1 Sensitivity (risk aversion) to variance in first system
attribute

vx2 Sensitivity (risk aversion) to variance in second sys-
tem attribute

vx1,x2 Sensitivity to covariance first and second system at-
tributes

From the asymmetric preference structure, the policy-maker’s problem can be expressed
as maximizing an expected utility function. The expected utility from the state of the system
attributes is defined by the following integral that represents the cost of inaction:

U (t0, T |wx1 , wx2 , vx1 , vx2 , vx1,x2) =

T∫
t0

e−βt` (t|wx1 , wx2 , vx1 , vx2 , vx1,x2) dt (47)

=

T∫
t0

e−βt (wx1µx1 (t) + wx2µx2 (t) + vx1σx1 (t) + 2vx1,x2σx1,x2 (t) + vx2σx2 (t)) dt

D6.1 - Deliverable 6.1: A General Systems Model Architecture 54/62

where

`(t|wx1 , wx2 , vx1 , vx2 , vx1,x2) = wx1µx1(t) + wx2µx2(t) + vx1σx1(t) (48)
+2vx1,x2σx1,x2(t) + vx2σx2(t)

The additional separable component in the policy-maker’s loss function is defined with re-
spect to the additional investment required in the presence of disclosed vulnerabilities. The
objective is to find the policy-maker’s cycle time to investment; that is, the upper limit of in-
tegration, T , which satisfies the equality of utility of action and utility of inaction. We denote
this value as t∗.

10. Preliminary Models for National Grid

In this section we delineate the level of abstraction of the system and policy components for
various security problems derived from the case study deliverables, D1.3, D2.3 and D3.3.
This is the provisional work and is the starting point for SECONOMICS Deliverable 6.2.
Part of the work in Deliverable 6.2 is to identify the security problems that may be tractably
modeled using our approach and then use these models to inform corporate and public
policy using the ideas developed previously in the document.

Critical national infrastructure presents an eclectic set of security scenarios for the pur-
poses of applied modelling. These summaries are short and are designed to link this
overview of the various modeling approaches to the case study WPs. For more details see
D1.3, D2.3 and D3.3. In Deliverable 2.3 a series of business objects are identified as being
critical and within the scope of the project. These are the SCADA and control systems for
electricity distribution, the interconnectors that join separate national distribution networks
and the corporate network used in administering the business (separate from control of the
CNI side).

10.1 SCADA and Control Systems

The Supervisory Control And Data Acquisition (SCADA) system links the network operators
to the substations, generators and interconnectors that comprise the nodes of the electricity
network. The network requires both load information from the demand side and electricity
generation (supply) side to ensure the total amount of electricity in the distribution network
is balanced.

Both undersupply and oversupply of electricity in system such as this presents a threat
to safety of end users on the grid. This requires modelling of two networks, the electricity
transmission network and the data network that runs alongside it.

The data network measures the load on the transmission network at specific intervals.
Therefore the two networks interact at certain nodes in their topology. The SCADA system
monitors the load at each point in the transmission network and ensures it lies within the
operator required range.

Let x be a vector of nodes in the transmission network, y be a vector of nodes supplying
information to the SCADA system and z be a vector of controls (for instance generation
capacity and routing controls). The network N (x, y), measures the load and data of the

D6.1 - Deliverable 6.1: A General Systems Model Architecture 55/62

load for the SCADA system. In a structural form, the model should in equilibrium N(x, z) −
D(y, z) = 0, where N(·) and D(·) are functions that translate load and data network nodes
into equivalent measures.

An abstraction would be setting N(x, z) − D(y, z) = [C, I, A]′ where C, I and A are
measurements of confidentiality, availability and integrity, respectively. In this context we can
use a standard dynamics stabilization model where L(C − C̄, I − Ī , A− Ā) is a loss function
designed to stabilize the network loads by adjusting control nodes z. The parameters of the
loss function are influenced by the target levels of confidentiality, availability and integrity (C̄,
Ī, Ā).

This could then be treated as a standard impulse response model, where the system
equations (N(x, z), D(y, z)) evolve as series of differential equations. Following the approach
suggested in [12]. Given that the structure of D(·) includes overlapping wired and wireless
data communication, we can add a set of sub functions that delineate this extra complexity
to the data channel system.

The structure of N(·) and D(·) is influenced by the specific technologies involved in the
design of the system (see SECONOMICS deliverable D2.3 for qualitative description of the
network technology and structure).

10.2 Interconnectors

Related to the SCADA system are load demands that can come from outside the geograph-
ical location of the transmission grid via the interconnector system. In deliverable D2.3 the
use of interconnectors in Europe is discussed at length. Interconnectors bridge different
electricity grids of individual countries. The use of this system is in managing volatility of
demand and supply across larger geographical, population and industrial areas.

From D2.3: Making this functionality possible allows countries to limit the amount of
reserve capacity it must hold as well as help with any potential shocks in demand or supply
such as increases in demand due to large events or unexpected malfunctions at power
generation sites.

Interconnectors add two stochastic properties to the network problem described in §(10.1)
stochastic load draw or surplus and information sharing across the interconnector. This infor-
mation is then connected to the SCADA system. Addition of this new location and resource
to the transmission system.

The addition of the SCADA and the ability to control incoming and outgoing load along
with the data nests within the previously illustrated SCADA network model. Again we can
think of policy modelling for interconnectors at two levels.

First from a network view, a systems model representation allows for comprehensive
checking of the security architecture under a variety of foreseeable scenarios. However,
assigning likelihoods to these scenarios is somewhat complex. Data driven analysis based
on historical trends is often unreliable in forecasting future directions for supply and demand
and for certain types of problem, the bounds and moments of the appropriate distribution of
outcomes are uncertain and prone to structural change.

In addition to the SCADA and related interconnector security scenarios we will also look
at and potentially include the following future state problems (see WP2 Deliverable D2.3
Section 4.2.1 for detailed information).

D6.1 - Deliverable 6.1: A General Systems Model Architecture 56/62

10.3 Corporate Network

Corporate networks may have developing extensive links between the corporate network and
the CNI SCADA systems. This may result in interfaces between the CNI SCADA systems
and the internet. This opens the CNI systems and equipment to a vast array of attacker and
attack methods which the systems have not been built to defend against. The examples
provided in sections 4-9 provide the elements of a model for a corporate network.

10.4 Smart Metering

Smart metering is a new innovation whereby the meters at the end user are networked via
the billing and distribution networks. The implications for security scenarios relating to the
SCADA system and the corporate networks (in this case the potential security interaction
between the various agents in the electricity production and distribution system in the UK).

The level of abstraction in terms of applying the project modelling framework to the smart
metering case will be determined over the period M12 to M24 and incorporated into deliver-
able D6.2 and D8.2.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 57/62

11. Conclusions

This deliverable has outlined a modelling framework designed to operate on a multi-scale
basis for a variety of security modelling problems. We propose to nest a systems model
architecture in to an economic setting. For various different problem types we can focus on
modelling the specific architecture of the system delineating policy in the context of hierar-
chies.

As we move to more macro problems, we can retrench and generalize the systems archi-
tecture and focus on either risk based analysis using real options or game theory to model
strategic interactions between agents in the security system (for instance attackers and tar-
gets in a policy game).

We have outlined in detail a set of potential models for airports and critical infrastructure
that are relevant for the case studies developed within the SECONOMICS project. Further
work will focus on refining the linkages with WP5, D5.2 during the period M12 to M24 and
integrate the framework more closely with the cases provided in WP3, D3.3 final require-
ments.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 58/62

BIBLIOGRAPHY

[1] M. Collinson, B. Monahan, and D. Pym. A Discipline of Mathematical Systems Mod-
elling. College Publications, 2012. ISBN ISBN 978-1-904987-50-5.

[2] Matthew Collinson, Brian Monahan, and David Pym. Semantics for structured systems
modelling and simulation. In Proc. Simutools 2010. ACM Digital Library, ISBN 78-963-
9799-87-5, 2010. ISBN 78-963-9799-87-5.

[3] M. Collinson and D. Pym. Algebra and logic for resource-based systems
modelling. Mathematical Structures in Computer Science, 19:959–1027, 2009.
doi:10.1017/S0960129509990077.

[4] M. Collinson, B. Monahan, and D. Pym. A logical and computational theory of located
resource. Journal of Logic and Computation, 19(b):1207–1244, 2009.

[5] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems: Concepts
and Design. Addison Wesley; 3rd edition, 2000.

[6] Core Gnosis. http://www.hpl.hp.com/research/systems_security/
gnosis.html.

[7] Y. Beres, M. Casassa Mont, J. Griffin, and S. Shiu. Using security metrics coupled
with predictive modeling and simulation to assess security processes. In Proc. Em-
pirical Software Engineering and Measurement (ESEM) 2009, pages 564–573. IEEE
Computer Society, 2009.

[8] David Pym and Simon Shiu. Security analytics: Bringing science to security manage-
ment. IISP Pulse, 4(Summer):12–13, 2010.

[9] Adrian Baldwin, Yolanta Beres, Geoffrey B. Duggan, Marco Casassa Mont, Hilary John-
son, Chris Middup, and Simon Shiu. Economic methods and decision making by se-
curity professionals. In Bruce Schneier, editor, Economics of Information Security and
Privacy III, pages 213–238. Springer, 2012.

[10] D. Pym. Trust Economics: A Systematic Approach to security decision-making.
Hewlett-Packard, 2011. http://www.hpl.hp.com/news/2011/oct-dec/Final_
Report_collated.pdf.

[11] A. Beautement, R. Coles, J. Griffin, C. Ioannidis, B. Monahan, D. Pym (Corresponding
Author), A. Sasse, and M. Wonham. Modelling the Human and Technological Costs
and Benefits of USB Memory Stick Security. In M. Eric Johnson, editor, Managing
Information Risk and the Economics of Security, pages 141–163. Springer, 2008.

[12] C. Ioannidis, D. Pym, and J. Williams. Investments and trade-offs in the economics
of information security. In Roger Dingledine and Philippe Golle, editors, Proceedings
of Financial Cryptography and Data Security ’09, volume 5628 of LNCS, pages 148–
166. Springer, 2009. Preprint available at http://www.cs.bath.ac.uk/~pym/
IoannidisPymWilliams-FC09.pdf.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 59/62

http://www.hpl.hp.com/research/systems_security/gnosis.html
http://www.hpl.hp.com/research/systems_security/gnosis.html
http://www.hpl.hp.com/news/2011/oct-dec/Final_Report_collated.pdf
http://www.hpl.hp.com/news/2011/oct-dec/Final_Report_collated.pdf
http://www.cs.bath.ac.uk/~pym/IoannidisPymWilliams-FC09.pdf
http://www.cs.bath.ac.uk/~pym/IoannidisPymWilliams-FC09.pdf

[13] Christos Ioannidis, David Pym, and Julian Williams. Information Security Trade-offs
and Optimal Patching Policies. European Journal of Operational Research, 216(2):
434–444, 2011. doi:10.1016/j.ejor.2011.05.050.

[14] Y. Beres, D. Pym, and S. Shiu. Decision support for systems security investment. In
Proc. Business-driven IT Management (BDIM) 2010. IEEE Xplore, 2010.

[15] Marco Casassa Mont, Yolanta Beresnevichiene, David Pym, and Simon Shiu. Eco-
nomics of identity and access management: Providing decision support for investments.
In Proc. Business-driven IT Management (BDIM). IEEE Xplore, 2010.

[16]

[17] L.A. Gordon and M.P. Loeb. The Economics of Information Security Investment. ACM
Transactions on Information and Systems Security, 5(4):438–457, 2002.

[18] D.J. Pym, P.W. O’Hearn, and H. Yang. Possible Worlds and Resources: The Semantics
of BI. Theoretical Computer Science, 315(1):257–305, 2004.

[19] John Reynolds. Separation logic: A logic for shared mutable data structures. In Pro-
ceedings of the Seventeenth Annual IEEE Symposium on Logic in Computer Science,
Copenhagen, Denmark, July 22-25, 2002, pages 55–74. IEEE Computer Society Press,
2002.

[20] David Pym and Chris Tofts. Systems Modelling via Resources and Processes: Philos-
ophy, Calculus, Semantics, and Logic. In L. Cardelli, M. Fiore, and G. Winskel, editors,
Electronic Notes in Theoretical Computer Science (Computation, Meaning, and Logic:
Articles dedicated to Gordon Plotkin), volume 107, pages 545–587, 2007. Erratum (with
Collinson, M.) Formal Aspects of Computing (2007) 19: 551–554.

[21] David Pym and Chris Tofts. A calculus and logic of resources and processes. For-
mal Aspects of Computing, 18(4):495–517, 2006. Erratum (with Collinson, M.) Formal
Aspects of Computing (2007) 19: 551-554.

[22] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25(3):
267–310, 1983.

[23] P.W. O’Hearn and D.J. Pym. The logic of bunched implications. Bulletin of Symbolic
Logic, 5(2):215–244, June 1999.

[24] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process Algebra-
based Approach to Performance Modelling. In Proceedings of the Seventh International
Conference on Modelling Techniques and Tools for Computer Performance Evaluation,
number 794 in Lecture Notes in Computer Science, pages 352–368. Springer-Verlag,
1994.

[25] M. Hennessy and G. Plotkin. On observing nondeterminism and concurrency. In Pro-
ceedings of the 7th ICALP, volume 85 of Lecture Notes in Computer Science, pages
299–309. Springer-Verlag, 1980.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 60/62

[26] R. Milner. Communication and Concurrency. Prentice Hall, New York, 1989. ISBN
0-13-114984-9 (hardcover) 0-13-115007-3 (paperback).

[27] Colin Stirling. Modal and Temporal Properties of Processes. Springer Verlag, 2001.

[28] D.J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications,
volume 26 of Applied Logic Series. Kluwer Academic Publishers, 2002. Errata and
Remarks maintained at publisher’s website and at: http://homepages.abdn.ac.
uk/d.j.pym/pages/BI-monograph-errata.pdf.

[29] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.

[30] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,
2000.

[31] G. Birtwistle. Demos — discrete event modelling on Simula. Macmillan, 1979.

[32] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic Model Checking
for Performance and Reliability Analysis. ACM SIGMETRICS Performance Evaluation
Review, 36(4):40–45, 2009.

[33] C.G. Cassandras and M.I. Clune and P.J. Mosterman. Hybrid System Simulation with
SimEvents. In Discrete Event Systems, 2006 8th International Workshop on (WODES),
pages 386–387, 2006.

[34] A. Beautement and D. Pym. Structured systems economics for security manage-
ment. In T. Moore, editor, Proc. WEIS 2010, Harvard, 2010. http://weis2010.
econinfosec.org/papers/session6/weis2010_beautement.pdf.

[35] M. Collinson, D. Pym, and B. Taylor. A framework for modelling security architectures
in services ecosystems. In Proc. ESOCC 2012, volume 7592 of LNCS, pages 64–79.
Springer, 2012.

[36] Donn B. Parker. Fighting Computer Crime, a New Framework for Protecting Information.
John Wiley and Sons, 1998.

[37] R.L. Keeney and H. Raiffa. Decisions with multiple objectives: Preferences and value
tradeoffs. Wiley, 1976. ISBN 0471465100.

[38] Francisco J. Ruge-Murcia. Inflation targeting under asymmetric preferences. Journal of
Money, Credit, and Banking, 35(5), 2003.

[39] H.R. Varian. A bayesian approach to real estate assessment. In S.E. Feinberg and
A. Zellner, editors, Studies in Bayesian Econometrics in Honor of Leonard J. Savage,
pages 195–208. North-Holland, 1975.

[40] A. Zellner. Bayesian prediction and estimation using asymmetric loss functions. Journal
of the American Statistical Association, 81:446–451, 1986.

[41] Y. Beres, D. Pym, and S. Shiu. Decision support for systems security investment. In
Proc. Business-driven IT Management (BDIM) 2010. IEEE Xplore, 2010.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 61/62

http://homepages.abdn.ac.uk/d.j.pym/pages/BI-monograph-errata.pdf
http://homepages.abdn.ac.uk/d.j.pym/pages/BI-monograph-errata.pdf
http://weis2010.econinfosec.org/papers/session6/weis2010_beautement.pdf
http://weis2010.econinfosec.org/papers/session6/weis2010_beautement.pdf

[42] L.A. Gordon and M.P. Loeb. Managing Cybersecurity Resources: A Cost-Benefit Anal-
ysis. McGraw Hill, 2006.

[43] D. Rogers and L.C.G. Williams. Diffusions, Markov Processes, and Martingales. Cam-
bridge Mathematics Library, 2000.

[44] K. Taksumi and M. Goto. Optimal timing of information security investment: A real
options approach. In T. Moore, D. Pym, and C. Ioannidis, editors, Economics of Infor-
mation Security and Privacy. Springer, 2010. Proceedings of WEIS 2009, London.

[45] D. Kahneman and A. Tversky. Prospect theory: An analysis of decisions under risk.
Econometrica, 47:313–327, 1979.

[46] Larry G. Epstein and Stanley E. Zin. Substitution, Risk Aversion, and the Temporal Be-
havior of Consumption Growth and Asset Returns I: A Theoretical Framework. Econo-
metrica, 57(4):937–969, July 1989.

[47] R. Abel. Asset Prices under Habit Formation and Catching up with the Joneses. The
American Economic Review, 80(2):38–42, 1990.

[48] O. Loistl. The Erroneous Approximation of Expected Utility by Means of Taylor’s Series
Expansion: Analytic and Computational Results. American Economic Review, 66(5):
904–910, 1976.

D6.1 - Deliverable 6.1: A General Systems Model Architecture 62/62

	Executive summary
	Introduction
	Rules-based versus Principles-based Approaches
	Modelling Incentives and Principal-Agent Approaches
	Principal-Agent Problems in Risk Management
	Diminishing Marginal Returns to Security Investment
	The Role of Public Policy
	Policy Agendas
	Insurance Markets
	Summary

	A Discipline of Mathematical Systems Modelling
	Modelling Methodology
	Structure and Process Calculus
	Processes and Resources
	Location

	Environment

	Reasoning about Process Models
	Logic
	Model Checking

	The Gnosis Modelling Tool
	Adding located resource: secure boats

	Alternative Simulation Approaches
	Requirements
	Alternative Systems
	Traditional Applied Mathematical Systems
	Systems for Concurrent Modelling

	Summary

	Mathematical Models to Matlab Models via Gnosis
	An Architectural Methodology for Organizational Security Models
	The Basic Concepts of Information Security
	An Economic View
	Modelling the Security Architecture
	The Framework Layer
	The Instantiation Layer

	Real options and pricing risk
	Models of attack and defense with risk averse targets
	A Policy Model with Insurance
	Attacking Targets and Levels of Defensive Expenditure
	Self-Protection with Actuarially Fair Insurance
	What does the equilibrium tell us?

	Policy Maker Utility Theory and Loss Function for Vulnerability Management
	The Power Utility Family
	The Policy-maker's Problem
	Decision Support

	Preliminary Models for National Grid
	SCADA and Control Systems
	Interconnectors
	Corporate Network
	Smart Metering

	Conclusions
	BIBLIOGRAPHY

