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Executive summary

This report provides several template models aimed at devising strategies for the protec-
tion of critical infrastructures or, more generally, at supporting security policy making. The
template models are based on the adversarial risk analysis framework. While risk analysis
provides a methodology to mitigate the effects of threats that may harm the performance
of a system, adversarial risk analysis expands the methodology focusing on threats com-
ing from intelligent intentional adversaries. Specifically, we have developed five different
models to support a Defender in facing the actions of an Attacker. The models differ from
each other in the way and order in which the possible attacks and defences take place
within the sequence of events. Thus, we have given the models self-explanatory names:
(a) Simultaneous Defend-Attack, in which a defender and an attacker decide their defence
and attack, respectively, without knowing the action chosen by each other; (b) Sequential
Defend-Attack, in which the defender first chooses a defence and, then, having observed
it, the attacker chooses an attack; (c) Sequential Attack-Defend, in which the attacker first
performs an attack and, then, having suffered it, the defender chooses a defence; (d) Se-
guential Defend-Attack-Defend, in which the defender first deploys defensive resources.
Then, the attacker, having observed such decision, performs an attack and, finally, the de-
fender tries to recover from the attack as best as she can; and (e) Sequential Defend-Attack
with Private Information, similar to the Sequential Defend-Attack, but with some informa-
tion that the defender does not want the attacker to know.

These five models may be seen as basic building blocks for general risk analysis prob-
lems related with the protection of critical infrastructures. For each model, we provide the
following information: (1) A general description of the model, emphasising its most relevant
features; (2) A simple motivating example, dealing with some related problem regarding the
protection of critical infrastructure; (3) The standard game theoretic solution. This is a clas-
sic approach, overcome by the adversarial risk analysis methodology, although some of its
concepts are useful as a starting point to understand our template models; (4) The approach
from the view of adversarial risk analysis. This is the main part of our document, dealing with
all the theoretical and modelling aspects of our models; and (5) A basic numerical illustration
in a stylised problem. This case study will complete in full detail the ideas sketched in the
introductory example. For the sake of clarity, all examples will be placed at the end of this
document, on a separate annex.

We also illustrate how the templates may be adapted in more realistic problems, specifi-
cally in a security resource allocation problem within a spacial setting, i.e. when assets and
values are distributed among various nodes (cells). This may be viewed essentially as a set
of adversarial risk analysis models, one for each cell, with models coordinated by resource
constraints and value aggregation across each cell for both the Defender and the Attacker.
We end up discussing issues in opponent modelling, in which our aim is to provide models
for the decision making of all the participants.
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1. Introduction

Game theory and other group decision making paradigms have long been considered of little
relevance for practical risk management decision-making, see Bier and Cox Jr (2007). This
viewpoint has recently become less dogmatic because:

» High-profile terrorist attacks have demanded significant national investment in protec-
tive responses, and there is public concern that not all of these investments are prudent
and/or effective, see Parnell et al. (2008).

» Key business sectors (especially finance, e-commerce, and software) have become
much more mathematically sophisticated, and are now using this expertise to shape
corporate strategy for auction bidding, lobbying efforts, and other decisions, see McAfee
and McMillan (1987) or Rothkopf (2007).

» Regulatory legislation must balance competing interests (for growth, environmental
impact, safety) in a way that is credible and transparent, see Heyes (2000).

» The on-going arms race in cybersecurity means that the financial penalties for myopic
protection are large and random, see Killourhy et al. (2004).

The involved challenges cross many fields (Statistics, Economics, Operations Research, En-
gineering, Sociology, Political Science, etc.) and are characterised by the fact that there are
two or more intelligent opponents who make decisions for which the outcome is uncertain.
Collectively, we call this problem area Adversarial Risk Analysis (ARA).

Traditional statistical risk analysis grew in the context of nuclear reactor safety, insurance,
and other applications in which loss was governed by chance rather than the malicious (or
self-interested) actions of intelligent actors. But in ARA, one needs to have some model for
the decision-making of all the participants. This model might be classically game-theoretic,
with (non-cooperative) Nash equilibria as core concept, see Myerson (1997), or it might be
more psychological, reflecting either a decision analytic formulation, see Kadane and Larkey
(1982), or empirical studies of game behaviour, see Camerer (2003).

Specifically regarding counterterrorism, appropriate responses to security represent one
of the key challenges for states in this century, see English (2010) or Lomborg (2007). In-
deed, after recent large-scale terrorist attacks, multi-billion euro investments are being made
to increase safety and security. This has stirred public debate about the convenience of such
measures. In turn, this has motivated a great deal of interest in modelling issues in relation
with counterterrorism, with varied techniques and tools from fields such as reliability analy-
sis, data mining, or complex dynamic systems. Recent accounts of various techniques and
applications may be seen in Ezell et al. (2010), Gutfraind (2009) or Wein (2009). Parnell
et al. (2008) and Enders and Sandler (2011) provide overviews on strategies, models, and
research issues in terrorism risk analysis. As mentioned, the key feature of these problems
is the presence of intelligent opponents whose decision outcomes are uncertain and inter-
dependent. Thus, it is no wonder that much of this research has reminiscent game-theoretic
and risk analytic flavors. Parnell et al. (2008) provided an in-depth review for the US Na-
tional Academy of Sciences on bioterrorist assessment models, with important conclusions,
including the inadequacy of traditional risk analysis tools, like fault trees, for not account-
ing for intentionality; the critical common knowledge assumption of game theoretic based
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approaches; and, finally, the problems of decision analytic based approaches in forecast-
ing adversarial actions. The role of standard risk analysis in the management of terrorism
risks has been discussed in Deisler Jr (2002). Also, Garrick (2002) points out some of the
challenges associated with extending standard risk assessment methods for the analysis of
threats from terrorist acts. Dillon et al. (2009) describe a decision making framework based
on risk analysis principles for allocating anti-terrorism resources using risk scores. Ezell
et al. (2010) defend the use of traditional probabilistic risk assessment methods like event
trees to estimate terrorism risks.

These approaches, based on the direct application of conventional risk analysis methods
to terrorism risk management, have been criticised by Cox Jr (2009a) and Brown and Cox Jr
(2011), who warn about the inappropriateness of modelling the actions from terrorists in
essentially the same way as random adverse events in natural or engineered systems. On
the other hand, there is a rich literature in political sciences and economics regarding game
theory and terrorism, though it places little emphasis on risk analysis aspects, see Siqueira
and Sandler (2006), Arce and Sandler (2007) or Powell (2007). Recent relevant references
with a game-theoretic flavour include various papers by Brown et al. (2005, 2006, 2008)
who present bilevel (max-min, minmax) and trilevel (min-max-min) optimization models for
three stylised counterterrorism models such as defender-attacker, attacker-defender, and
defender-attacker-defender problems. Kardes and Hall (2005) survey various approaches
to strategic decision making in the presence of adversaries, arguing for the use of robust
stochastic games to deal with counterterrorism, pointing out to the difficulty in assessing
what the adversary aims at doing in this context. The book edited by Bier and Azaiez (2009)
contain many papers on the attacker-defender model and several variants and applications.
Insights combining risk analysis and game theory can be found in Hausken (2002) and
Cox Jr (2009b).

A thread in the above game-theoretic approaches is the common knowledge assumption,
criticised, for example, in Raiffa et al. (2002). Most versions of game theory assume that the
opponents not only know their own payoffs, preferences, beliefs, and possible actions, but
also those of their opponents. Moreover, when there is uncertainty in the game, it is assumed
that players have common probabilities over the uncertain variables. This strong common
knowledge assumption allows a symmetric joint normative analysis in which players try to
maximise their expected utilities (and expect the other players to do the same). Therefore,
their decisions can be anticipated and are predated by Nash equilibria concepts. However,
in counterterrorism contexts, players will not typically have full knowledge of their opponent’s
objectives, beliefs, and possible moves. This is aggravated as participants try to conceal
information.

The other mainstream literature in the field has a decision analytic flavor. Among others,
Pinker (2007) uses qualitative influence diagrams to assess short and long-term deployment
of countermeasures; Merrick and McLay (2010) use decision trees and influence diagrams
from the point of view of the defender to model the decision of installing radiation sensors
to screen cargo containers against terrorist radiological threats; and Parnell et al. (2010)
describe canonical terrorist multiobjective decision trees and influence diagrams to evalu-
ate bioterrorist threats. Their recurrent issue is the difficulty in assessing the probabilities
over the actions of the adversaries, which is the key objection, see Harsanyi (1982), to the
Bayesian approach to games, introduced by Kadane and Larkey (1982), Raiffa et al. (2002)
and Raiffa (1982). Banks and Anderson (2006) provide a numerical comparison of classi-
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cal and Bayesian approaches to games within a smallpox attack problem. Paté-Cornell and
Guikema (2002) present an interesting perspective, suggesting to address the problem of
assessing the probabilities of possible attacks by modelling the attacker’s problem from the
point of view of the defender, based on point estimates of the attacker’s probabilities and
utilities. Then, they assess the expected utilities of the attacker’'s actions and estimate the
probabilities of these actions as proportional to the attacker’s perceived expected utilities.
This approach does not take proper account of the fact that the (idealised) attacker is an
expected utility maximiser and, thus, would certainly choose the optimal action. Another
possibility would be to undertake a sensitivity analysis approach, see Rios Insua and Rug-
geri (2000), taking into account our imprecision about the likely actions of our adversary. This
is the venue adopted by von Winterfeldt and O’Sullivan (2006) within a simple decision tree
to evaluate man-portable air defence systems countermeasures. This may be too involved
computationally in complex problems.

Many of those models previously commented combine risk analysis, decision analysis
and game theory, as reviewed in Merrick and Parnell (2011) who comment favorably about
Adversarial Risk Analysis (ARA), introduced in Rios Insua et al. (2009). In supporting one of
the participants, ARA views the security resource allocation problem as a decision analytic
one, but procedures which employ the game theoretical structure, and other information
available, are used to estimate the probabilities of the opponents’ actions.

Summarising, ARA aims at providing one-sided prescriptive support to one of the in-
tervening agents, the defender, based on a subjective expected utility model, treating the
adversary’s decisions as uncertainties. In order to predict the adversary’s actions, we model
his decision problem and try to assess his probabilities and utilities. Assuming that the ad-
versary is an expected utility maximiser, we can predict the adversary’s actions by finding
his maximum expected utility action. Our uncertainty about the adversary’s probabilities and
utilities is propagated over to the adversary’s decision. Sometimes, such assessment may
lead to a hierarchy of nested decision problems, as described in Rios Insua et al. (2009),
close to the concept of k-level thinking, see Stahl and Wilson (1995).

In this deliverable we provide in Section 2 an initial motivation of how Risk Analysis has
derived into Adversarial Risk Analysis over the last few years. We then apply the ARA frame-
work to five prototypical models relevant in security risk analysis in Section 3. Two of them
(specifically, the Sequential Defend-Attack and the Simultaneous Defend-Attack models) will
be analysed in detail, whereas the three others (the Sequential Attack-Defend, the Sequen-
tial Defend-Attack-Defend and the Sequential Defend-Attack with Private Information) will
be addressed in detail in corresponding annexes. These basic models may be used as
templates for general security risk models. Finally, in Section 4 we will describe how the pre-
vious templates can be adapted for the incumbent problems to take into account the problem
topology, possible constraints over resources and other complicating features.

We include six annexes at the end of this document. The first three describe in more de-
tail the Sequential Attack-Defend Model, the Sequential Defend-Attack-Defend Model, and
the Sequential Defend-Attack with Private Information Model. The fourth annex contains
detailed examples of the models above, illustrating real world scenarios. The fifth annex out-
lines how the Sequential Defend-Attack-Defend can be adapted for spacial settings. Finally,
in the last annex we present a study of strategies for mitigating attacker’s malicious activities,
which uses a simple game-theoretic Attack-Defend model. This would help one understand
better about how to design effective strategies relevant to security problems.
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For all the models, we first provide a thorough description of them, using influence dia-
grams and decision trees as well as a simple example. We then analyse the models from
a game theoretical perspective, and, after criticising such approach, we provide the ARA
solution and illustrate the corresponding model with an example. We shall assume two par-
ticipants, the Attacker (He), and the Defender (She). We aim at supporting the Defender in
making her decisions. Our agents’ decisions will be termed, generically, as defences and
attacks. Depending on the context (strategic, tactical, operational), these may be viewed
as security policies, security policy levels, security resource allocations or security plans,
among others. Unless stated otherwise, we shall assume discrete sets of alternatives for
both the Attacker and the Defender.

The relevance of this document in relation with the other deliverables of WP5, D5.2 - Case
Studies in Security Risk Analysis, and D5.3 - Describing a General Methodology for Critical
Infrastructure Protection Risk Analysis, is evident. According to the DoW, D5.1 will lead the
development of template risk analysis models for application in the case studies. Taking D5.1
as a starting point, D5.2 will explore the modification of the template models after application
and start the development of the general methodology in D5.3. Moreover, based on the
results obtained in D5.1 and D5.2, D5.3 will provide information and documentation to the
WP8 leader to facilitate tool development.

This latter aspect makes reference to the interaction of this deliverable with WP8. But
there are actually relationships with all other WPs within the SECONOMICS project. Re-
garding WP1-WP3, we have fed our models with information coming from experts and
stakeholders of the corresponding Wps. We shall further explore and adapt the templates to
the cases proposed in such WPs in D5.2 (and D5.3). On the other hand, WP4 has provided
us with ideas about what to model within the relevant utility functions to be further used when
solving the case studies. The collaboration with WP6 has been also very fruitful, since our
aim is to combine our models with those in WP6. Therefore, intense conversations have
taken place in order to start with the integration of both methodologies. Finally, WP7 has
given constant advice in determining which of the models presented here may be relevant in
general security problems and how they may be used in other application areas.
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2. From Risk Analysis to Adversarial Risk Analysis

This section reviews a schematic framework that formalises standard risk analysis, as-
sessment, and management methods as in Haimes (2004) or Bedford and Cooke (2001),
adapted to the classic proposal of Kaplan and Garrick (1981). Influence diagrams are used
to structure problems. For simplicity, we assume that losses can be monetised as costs
associated with interventions. All the participating agents are assumed to be expected utility
maximisers, see French and Rios Insua (2000).

Figure 1 shows an influence diagram, see Pearl (2005), that displays the simplest version
of a non-adversarial risk management problem. An influence diagram is a directed acyclic
graph with three kinds of nodes: decision nodes, shown as rectangles; uncertainty nodes,
shown as ovals; and value nodes, shown as hexagons. A functional arrow ends in a value
node, and indicates that the utility function depends on the immediately preceding nodes. A
conditional arrow ends at an uncertainty node, indicating that the probabilities at the head
depend on the values of the nodes at its tail. An informational arrow ends at a decision node,
indicating that, when the decision is made, the values of the preceding node are known.

Figure 1: Basic influence diagram

In Figure 1, the rectangle represents the set A of possible decisions or actions, the oval
represents the costs associated with the decisions, and the hexagon represents the net
consequences in terms of the decision-maker’s utility function. It corresponds to a problem
in which an organization has to make a decision a from a set .A of choices. The cost c that
results from each decision is uncertain and is modelled through the density =(c|a). The utility
u(c) of the cost is decreasing and typically non-linear: costs are bad, and catastrophic costs
are disproportionately bad. One should seek the decision that maximises the expected utility

1) = max {@Z)(a) = /u(c)w(c|a)dc} . Q)
acA
In practice, the cost for a particular action is complex and conditional; it includes fixed

and random summands. The organization will typically perform a risk assessment to:

1. identify disruptive events Eq, E,, ..., Ex (these may be assumed to be mutually exclu-
sive);

2. assess their probabilities of occurrence, P(E;|a) = g;(a); and,

3. assess the cost ¢; conditional on the occurrence of E; and decision a (these costs are
typically random).

It is convenient to let E; be the event that there are no disruptions, with probability go(a).
Figure 2 shows the influence diagram that extends the previous formulation to include risk
assessment.
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. /\ Total

Figure 2: Influence diagram with risk assessment

Let q(a) be the vector of probabilities corresponding to decision a and let 7i(c|a) be the
cost density for decision a, if event E; occurs. Then, the density of the cost for decision a
is the mixture Z:‘:O gi(a) mi(cla). Once the risk assessment is performed, the organization
wants the maximum expected utility decision, which is found by solving:

k
U = maaX [@Z)r(a) = Z Qi(a)/u(c)ﬂ'i (cla) dC] .
i=0

In some cases, the probabilities gij(a) are themselves uncertain, e.g., if one is combining
assessments from multiple experts. In that case, one can describe that uncertainty through
a distribution g(g(a)) on the unit simplex S in R**! and solve:

k
s = max [wr(a) : /S 0(a(@) <Z a@ [ U(C)m(C\a)dC> dq(a)] . )
i=0

Note that this maximises the utility with respect to uncertainty from two different sources—
the randomness in the costs and the imprecise knowledge about the disruption probabilities.

Consider the difference ¢ — v,. This is non-negative, as ) describes a decision prob-
lem without including the costs associated to disruptive events, whereas 1, relies upon risk
assessment and is more realistic. To reduce this difference, organizations often undertake
a risk management strategy. This introduces an additional set of choices M, e.g., contin-
gency plans or insurance policies; these tend to lower the costs associated with particular
disruptions and/or lower the chance of disruption.

As an example, imagine that a country is deploying security forces to defend some partic-
ular critical installations within its territory. The country considers three possible deployment
strategies, these being the decisions in A. But the risk assessment indicates the possibility
of security threats against different installations or staff from those initially expected by the
country officers. The country therefore considers sending more security personnel (which
would protect against the costs associated with both hazards), or investing in building deter-
rent infrastructures around the perimeter of the installations (at more expense, but with less
chance of suffering sabotages or attacks) or doing neither. These choices are the elements
in M.
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In principle, one could take the cross product of sets .A and M and then solve for v, over
this extended set. But in practice, it is often helpful for managers to keep these distinct. The
risk management solution remains the same,

VYm = (a,mr}lixx ™ Yr(a, m) (3

where, in an obvious extension of the previous notation,
di@am)=>" qia, m)/u(c)m(c\a, m) dc.

As before, a slightly more complicated formula applies when there is uncertainty in the
gi(a, m) probabilities. Figure 3 shows the influence diagram for a risk management prob-
lem.

Mitigate
Option

A \
Mitigation
Cost

Action

Hazard

Figure 3: Influence diagram with risk management

Since risk management extends the set of choices, vy, > vy, but both are still less than
1. The solution of (3) requires dynamic programming. The choice sets may be discrete (as
implied in our notation) or continuous (e.g., if the country officers can choose among defen-
sive investment measures with infinitely divisible costs). Clearly, additional complexity arises
if there is sequential investment, if one allocates risk management resources according to a
portfolio analysis, and if there are multiattribute utility functions.

2.1 Adversarial Risks: Modelling

We now consider the situation in which there are adversaries whose actions affect each
other’s risks. Assume that there are just two opponents (the Attacker and the Defender).
Their decision problems are structurally similar: both can take actions that affect the costs
of the other, and both seek to maximise their expected utilities. The sets of actions for the
Attacker and the Defender are, respectively, denoted by .4 and D; their utility functions are
ua(-) and up(-); and their collection of probabilities about outcomes are P, and Pp.

In this kind of situations, the Attacker and the Defender may have different utility functions
and different probability assessments of the costs. Each player may know his own payoffs
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but the other’s payoffs and beliefs may be unknown. One example is that of urban security
resource allocation to protect urban spaces. A defender is protecting a certain place from the
threats of an attacker. Such place will have a certain value for the defender and the attacker;
neither part knows what utility the other puts upon it. Furthermore, contenders may also
be uncertain about their own place valuation. Similarly, a situation with different probability
assessments might arise in counterterrorism, where both parties could have intelligence
that leads to very different estimates for the probability of successful attack under different
Attacker/Defender choices.

To illustrate these cases we modify in Figure 4 the usual influence diagram to show the in-
teraction between the decisions of the Attacker and the Defender. Specifically, to simplify our
discussion, we essentially consider symmetric diagrams for the Attacker and the Defender,
with interventions aimed at increasing the adversarial risks, impacting the likelihood and ex-
tra costs of the hazards. We expect this symmetry to be typical of corporate adversarial
decisions whereas in counterterrorism scenarios we shall expect more asymmetries.

Action

Action

Figure 4: Symmetric adversarial risk influence diagram
For the ARA case, the expected utilities of the Attacker and the Defender depend upon

the actions of both. Specifically, extending (1), the utility that the Attacker expects from
choosing action a € A when the Defender makes decisiond € D is

Ya(@, d) = /uA(c)wA(c|a, d)dc

where ma(c|a, d) € Pa represents the Attacker’s beliefs about the distribution of his costs for
the decision pair (a,d). As in (2), the Attacker can identify events Ey, ..., Ex that affect his
costs and include their impact explicitly:

Ya(a,d) = /SQA(Ol(a,d)) <Z qi(a,d)/uA(C)WA(C\a,d,Ei)dC> dq(a,d) (4)
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where ga(:), ga(a,d), ma(cla,d, Ej) € Pa. The expected utility ¢)p(a, d) for the Defender is
analogous. In this framework, the key remaining problem is to determine how the Attacker
and the Defender make their decisions.

As written, this description of ARA applies to normal form games, in which players make
simultaneous decisions. But it also applies to extensive form games, such as Stackelberg
games in which the Leader and Follower alternate their moves, or games in which agents act
asynchronously. Here the risk analysis must condition on the choices that have already been
made when calculating expected utilities. Such sequential analysis can become cumber-
some; often the tree of unmade decisions that drives the risk calculation becomes elaborate,
and simplifying assumptions are needed. A special case of this concerns the expression in
(3), where M was used to denote a set of decisions that were made separately. Addition-
ally, in realistic applications there are usually more than two actors, requiring an even more
complex analysis.

As we have already mentioned, ARA aims at providing one-sided prescriptive support to
the defender, based on a subjective expected utility model, treating the adversary’s decisions
as uncertainties. In order to predict the adversary’s actions, we model his decision problem
and try to assess his probabilities and utilities. Assuming that the adversary is an expected
utility maximiser, we can predict the adversary’s actions by finding his action of maximum
expected utility. Our uncertainty about the adversary’s probabilities and utilities is propagated
over to the adversary’s decision.

In the following section, we illustrate the use of ARA through the description of five rele-
vant models related with security risk issues, which can be used as templates to deal with
many real contexts, as the ones described in WP1, WP2 and WP3.

92



3. ARA Templates for Security

In this section, we present five template models that may be used to model cases in which
two subjects (typically, an attacker and a defender) confront themselves. We use them to
support one of them, the defender, to make appropriate decisions. We analyse in detail
the first two and introduce the other three, which are dealt with in detail in the annexes.
lllustrative examples of all models are gathered in ANNEX4. The initial model is introduced
first as it does not include strategic elements, therefore facilitating a smoother introduction.
The second is the simplest one requiring strategic considerations and allows the simplest
illustration of the hierarchical approach in ARA and its relations with k-level thinking.

3.1 Sequential Defend-Attack Model

We start by considering the Sequential Defend-Attack model. The Defender first chooses
a defence. Then, having observed it, the Attacker chooses an attack. To simplify our dis-
cussion, we shall assume that the Defender (she) has a discrete set of possible defences
D ={d;, d,, ..., dn} from which she must choose one. Similarly, the Attacker (he) has his set
of possible attacks A = {a;, a,, ..., a, } to choose one from. As earlier stated, the set D could
refer to possible defence policies, or possible policy levels, or defensive resource allocations
or plans, among others, and, similarly, for A.

We shall also simplify the problem by assuming that the only uncertainty deemed rele-
vant is a binary outcome S € {0, 1} representing the failure or success of the attack. Finally,
for both adversaries, the consequences depend on the success of this attack and their own
action. A typical example would be a Government deciding how to allocate defensive re-
sources around some transport infrastructures and, then, a terrorist organisation, having
observed how such resources are deployed, performing an attack to one, or more, of such
infrastructures.

Figure 5 depicts the problem graphically. On one hand it shows a coupled influence
diagram (an influence diagram for each participant with a shared uncertain node and a
linking arrow).

up  UA

******

(a) Influence diagram (b) Game tree (m=n = 2)
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The influence diagram shows explicitly that the uncertainty associated with the success of
an attack S is probabilistically dependent on the actions of both the Attacker and the De-
fender: S|d,a. Recall that arcs into a utility node represent functional dependence, see
Shachter (1986). Thus, the utility functions over the consequences for the Defender and the
Attacker are, respectively, up(d, S) and ua(a, S). The arc in the influence diagram from the
Defender’s decision node to the Attacker’s reflects that the Defender’s choice is observed by
the Attacker. We also show a game tree (with only two actions per adversary: m = n = 2) for
the problem, reflecting the sequential nature. Note that there are two utility values, for the
Attacker and the Defender, at the tree terminal nodes.

3.1.1 A Game Theoretic Analysis

We briefly describe first how standard game theory solves the Sequential Defend-Attack
problem, which is an example of a Stackelberg game, see Aliprantis and Chakrabarti (2000).
The game-theoretic approach requires the probability assessment over S, conditional on
(d,a). As the Defender and the Attacker may have different assessments for the success S,
these will be represented by pp(S = 1|d, a) and pa(S = 1/d, a), respectively. The solution
does not require the Attacker to know the Defender’s probabilities and utilities, since he
observes the Defender’s actions, but the Defender needs to know the Attacker’s.

To solve the problem, we need the expected utilities of players at node @ of the tree in
Figure 5. The expected utility that the Attacker obtains when the decisions are (d,a) € Dx A
is

Ya(d,a) = pa(S =0[d,a) ua(a, S =0) + pa(S = 1|d, a) ua(a, S = 1). (5)

We compute v¢p(d,a) symmetrically for the Defender. Then, the Attacker’'s best attack
against the defence d is

a’(d) = argmax,. ,¢a(d, a),vd € D. (6)

Under the assumption that the Defender knows how the Attacker will solve his problem, the
Defender’s best defence is

d* = argmaxyp¢o(d, a?(d)).

The solution (d*, a*(d*)) is a Nash equilibrium.

Under the above assumptions that the Defender accurately knows the Attacker’s true pa
and u,, the Defender has an advantage: she is the first to move and, ceteris paribus, has
larger expected utility than in the analogous simultaneous game. Bier (2007) discusses this
in detail, pointing out that sometimes disclosing information about one’s defences against
terrorism can have deterrent effects. However, the assumption that the Defender knows the
Attacker’s preferences and probabilistic assessments is far from realistic most of the times
in the kind of problems relevant to SECONOMICS.

3.1.2 The ARA Analysis

We now weaken the above common knowledge assumption: the Defender does not actually
know (pa,Ua). We thus consider the Defender’'s problem as a standard decision analysis
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problem: the Defender’s influence diagram in Figure 6, no longer has the hexagonal utility
node with the Attacker’s information and his decision node is perceived as random variable.
Similarly, her decision tree denotes uncertainty about the Attacker’'s decision by replacing
with @ and including a reference only to the Defender’s utility function. However, as we
shall see, she may have beliefs about (pa, ua), which will be relevant in our analysis.

(a) Influence diagram (b) Decision tree (m =n = 2)

By observing the influence diagram, note that in order to solve her decision problem,
the Defender has already assessed pp(S|d,a) and up(d, S), but she also needs pp(A|d),
which is her assessment of the probability that the Attacker will choose attack a, after having
observed that the Defender has chosen defence d. This assessment requires the Defender
to analyse the problem from the Attacker’'s perspective, possibly as we describe.

First, the Defender must place herself in the Attacker’s shoes, and consider his decision
problem. Figure 7 represents the Attacker’s problem, as seen by the Defender.

(a) Influence diagram (b) Decision tree (m =n = 2)
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We assume that the Defender analyses the Attacker’s problem considering that he is an
expected utility maximiser. Thus, she will use all the information and judgment available she
can about the Attacker’s utilities and probabilities. To find pp(A|d), she should first estimate
the Attacker’s utility function and his probabilities about success S, conditional on (d, a), and
consequently compute the required probability. However, instead of using point estimates for
pa and uy, to find the Attacker’s optimal decision a*(d) as in (6), the Defender’s uncertainty
about the Attacker’s decision should derive from her uncertainty about the Attacker’s (pa, Ua),
which we describe through a distribution F = (Pa, Ua). This, in turn, will induce a distribution
on the Attacker’s expected utility va(a, d) defined in (5). Thus, assuming the Attacker is an
expected utility maximiser, the Defender’s distribution about the Attacker’s choice, given her
defence choice d, is

po(A = a|d) = Pe[a = argmax,,Va(d,Xx)], Vac A,
where
Va(d,a) = Pa(S =0|d,a) Ua(a,S =0) + Pa(S =1|d,a) Ua(a,S =1).
She can use Monte Carlo simulation to approximate the probabilities pp(A|d) by drawing N
samples {(pk, uf\)}::':l from F, which produce {¢k}r., ~ Wa, and approximating pp(A = a|d)
by

#{a = arg max, 4 wk(d ,X)} Vac A (7
- , .

Once the Defender has completed these assessments, she can solve her problem. Her
expected utilities at node @ in Figure 6 for each (d,a) € D x A are

¥o(d,a) = po(S = 0/d,a) up(d, S = 0) + pp(S = 1|d, a) up(d, S = 1).

Po(A =ald) =

Then, her estimated expected utilities at node @ foreach d € D are
n
Jo(d) =) vo(d, a) po(A = aj|d).
j=1

Finally, her optimal decision is d* = arg max, ., Up(d).

Note that in terms of classic game theory, the solution d* for the sequential game need
not correspond to a Nash equilibrium. Assume there would be a third party who knows the
Defender’s true (pp, up) and her beliefs F about the Attacker’s utilities and probabilities, as
well as the Attacker’s true (pa, Ua) and his beliefs G about the Defender’s. That party would
then be able to predict the game, identifying the decisions chosen by each player. However,
this omniscient prediction would not be the Nash equilibrium computed based on the true
(pp, Up) and (pa, Ua). Since the players lack full and common knowledge, their choices are
unlikely to coincide with those made in the traditional game theory formulation.

ANNEX4 includes an example of this type of model.

3.2 Simultaneous Defend-Attack Model

We discuss now the Simultaneous Defend-Attack model: a Defender (She, D) and an At-
tacker (He, A) decide their defence and attack, respectively, without knowing the action cho-
sen by each other. See Zhuang and Bier (2007) for a related discussion. As an example,
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imagine a case in which the authorities of a given airport decide whether to introduce under-
cover marshals in the airport installations, which might, or not, be attacked by terrorists.

We shall assume again that the adversaries have discrete alternative sets D = {d,, d, ...,
dn} and A = {a;,ay,...,a,} of defences and attacks, respectively. We shall also assume
that the only relevant uncertainty is S, denoting the success (S = 1) or failure (S = 0) of an
attack. Each decision maker assesses differently the probability of the result of an attack,
which depend on the defence and attack adopted: pp(S = s|d,a) and pa(S = s|d,a). The
utility function of the Defender up(d, s) depends on her chosen defence and the result of the
attack. Similarly, the Attacker’s utility function is ua(a, s). This situation can be represented
by two coupled influence diagrams (one for the Defender, one for the Attacker) with a shared
uncertainty node associated with the attack success, as in Figure 8. We also show a game
tree for this problem, with just two possible attacks and defences, to simplify the figure.

v up ua
(d1,a1)
N
Y
(d1,a2)
N

N
Y

(d2, a2)
N

(a) Influence diagram (b) Game tree (m =n = 2)
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3.2.1 A Game Theoretic Analysis

Under the common knowledge assumption, preferences and beliefs from both the Defender
and the Attacker, (up, pp) and (ua, pa) respectively, are disclosed. Therefore, each adversary
knows the expected utility that each pair (d,a) € D x .4 would provide to both of them,
computed through

Yp(d,a) = pp(S =0[d,a) up(d,S = 0) +pp(S = 1|d,a) up(d, S = 1),
and, similarly,

Ya(d,a) = pa(S =0[d,a) ua(a, S = 0) + pa(S = 1/d, a) ua(a, S = 1).
A Nash equilibrium (d*, a*) for this game would satisfy

Yp(d*,a*) > Yp(d,a*) Vd e D and ya(d*,a") > ya(d*,a) Vac A.
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Finding Nash equilibria may require the use of randomised strategies Gibbons (1992). There
could be several equilibria with no unambiguous criteria to further discern among them Raiffa
et al. (2002).

If utilities and probabilities are not common knowledge among the adversaries, a game-
theoretic approach proceeds by modelling the game as one with incomplete information
Harsanyi (1967), introducing the notion of player types: each player will be of a certain type
which is known to him but not to his opponent. Thus, a player’s type represents the private
information he may have. The Defender’s type o € Tp determines her utility up(d, s, 7o) and
probability pp(S = s|d, a, ). Similarly, for the Attacker’s types 7a € Ta. Harsanyi (1967)
proposes the Bayes-Nash equilibrium as a solution concept, under a still strong common
knowledge assumption: the adversaries’ beliefs about the opponent’s types are common
knowledge and modelled through a common prior distribution 7(m, 74). Moreover, it is as-
sumed that the players’ beliefs about other uncertainties in the problem are also common
knowledge. Then, the solution is computed as follows.

Define, first, the notion of strategy functions for the participants. These associate a deci-
sion with each type, d : o — d(mp) € D and a : 7a — a(7a) € A. The Defender’s expected
utility associated with a pair of strategy functions, given any of her privately known types
™ € Tp, IS

Uo(d(r0).2,7) = [ [ 3 uo(d(ro). 5, oS = s[d(r0),alra), ) | m(ra| o) I

seS

Similarly, we can compute the Attacker’'s expected utility s (d,a(TA), TA) for a pair of strat-
egy functions (d, a), given any of his privately known types 7a € Ta. Then, a Bayes-Nash
equilibrium is a pair of strategy functions (d*, a*) for the Defender and the Attacker satisfying

@Z)D(d*(TD), a*, TD) Z @Z)D(d (TD), a*, TD), VTD and @Z)A(d*, a*(TA), TA) Z wA(d*, a(TA), TA), VTA

for every d and every a, respectively. Again, randomised strategies might be required to
possibly find an equilibria.

We believe that the underlying common (prior) knowledge assumption is still counter-
intuitive and unrealistic, specially in the context of security: it implies that players need to
disclose, inter alia, their true beliefs about their opponent’s type, as well as their private
probabilistic assessments in order to be able to compute a Bayes-Nash equilibrium.

3.2.2 The ARA Approach

More realistically, we weaken the common (prior) knowledge assumption. We assume that
we support the Defender in solving the Simultaneous Defend-Attack model. As reflected in
Figure 9, the Defender has to choose a defence d € D, whose consequences depend on
the success of an attack a € A simultaneously chosen by the Attacker, which is, therefore,
uncertain for the Defender at the time she makes her decision.

By standard decision theory, the Defender should maximise her expected utility, see
French and Rios Insua (2000). She knows her utility function up(d, s) and her probability as-
sessment pp over S, conditional on (d, a). However, she does not know the Attacker’s deci-
sion a at node A. She expresses her uncertainty through a probability distribution mp(A = a).
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(a) Influence diagram (b) Decision tree (m =n = 2)

Then, the optimization problem she should solve is

d*=argmaxy.p » [ > up(d,s) po(S =s|d,a) | m(A = a). (8)

acA L se{0,1}

The Defender thus needs to assess 7mp(A). To do so, suppose she thinks that the Attacker
is an expected utility maximiser who tries to solve the decision problem shown in Figure 10.
The Attacker would look for the attack a € A providing him maximum expected utility:

a'=argmax,., Y [ > ua(a,s) pa(S = s|d, a)| ma(D = d). (9)

deD Lse{0,1}

In general, the Defender will be uncertain about the Attacker’s utility function and probabilities
(ua, pa, ™a) required to solve such problem.

Suppose that we model all information available to the Defender about (ua, pa, 7a) through
a probability distribution (Ua, Pa, ). Then, and this will aid us in assessing 7p (A), mimicking
the argument in (9), we propagate such uncertainty to compute the probability distribution

AD ~ argmax,, » [ > Ua(a,s) Pa(S =s|d,a)| Ma(D = d). (10)

deD Lse{0,1}

Note that (Ua, Pa) could be directly elicited from the Defender. However, eliciting MNa(D) may
require further analysis, leading to the next level of recursive thinking: the Defender would
need to think about how the Attacker analyses her problem. This is why we condition in (10)
by (the distribution of) D. Note that 1(D) incorporates two sources of uncertainty:

* the Attacker’s uncertainty about the Defender’s choice, represented through his beliefs
ma(D), and

» the Defender’'s uncertainty about the probabilistic model =5 used by the Attacker to
predict what the Defender will choose, assessed from her perspective through ma ~ la.
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(a) Influence diagram (b) Decision tree (m =n = 2)

In the above, the Defender presumes that the Attacker thinks she is an expected utility
maximiser trying to solve a decision problem like the one described in Figure 9. Therefore,
in order for the Defender to assess the distribution (10), she will elicit (Ua, Pa) ~ F from her
viewpoint, and assess [15(D) through the analysis of her decision problem, as thought by
the Attacker, mimicking the resolution of problem (8) from the Attacker's perspective. This
reduces the assessment of [14(D) to the computation of the distribution

DIA* ~argmax,.p, > | > Up(d,s)Pp(S =s|d,a)| Mp(A" = a), (11)
acA Lse{0,1}

assuming the Defender is able to assess Mp(A?), where A! represents the Attacker’s de-
cision within the Defender’s second level of recursive thinking: the nested decision model
used by the Defender to predict the Attacker’s analysis of her decision problem. To assess
the distribution (11), the Defender needs to elicit (Up, Pp) ~ G, representing her probabilistic
knowledge about how the Attacker may estimate her utility function up(d, a) and her proba-
bility pp over S|d, a, when she analyses how the Attacker thinks about her decision problem.
Again, the elicitation of Mp(A!) might require further recursive thinking from the Defender.
This would lead to the recursive assessments:

Defender’s elicitation of Ip(A')

Repeat
Find My-1(A*¥) by solving
A*D* ~ argmax,c 4 D 4cp [Zse 101y Us(a, 8) P{(S =s]d, a)} I (DX = d)
with (U%,PK) ~ F*
Find II;x(D¥) by solving
D¥|A¥*! ~ argmaxyep D .4 |:Zse{0,1} Uk(d, s) PE(S = s|d, a)} I (A" = a)
with (UE,PE) ~ G*
k=k+1
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To simplify the discussion, we have assumed that the recursive decision models used to
assess Al and D' are a reflection of each other and have the same structure as in Figures 10
and 9, respectively. Moreover, the choice sets for the Defender and the Attacker are the
same in all the recursive models: D and A, respectively.

This hierarchy of nested models would stop at a level in which the Defender lacks the in-
formation necessary to assess the distribution F' or G' associated with the decision analysis
of Al and D', respectively. At this point, the Defender would holistically assign an uncondi-
tional probability distribution over A" or D', respectively, without going deeper in the hierar-
chy, summarising all remaining information she might have through the direct assessment
of Mpi-1(A") or My (D'), as might correspond. Of course, should she feel that she has no
information available to do so, she could assign a noninformative distribution, see French
and Rios Insua (2000). Note that this proposal is clearly connected with k-level thinking as
in Stahl and Wilson (1995) or Rothschild et al. (2012), who provide a related approach in
which a level k is first agreed on and, then, a uniform distribution is propagated.

We illustrate the ARA approach to this model with a simple numerical example in AN-
NEXA4.

3.3 Sequential Attack-Defend

We consider now the Sequential Attack-Defend model. The Attacker first performs an attack.
Then, having suffered it, the Defender chooses a defence. Again, we shall assume that the
sets of possible attacks and defences A = {a;,ay,...,a,} and D = {d;,dy, ...,dy} are dis-
crete. We shall also simplify the problem by assuming that the only uncertainty deemed
relevant is a binary outcome S € {0, 1} representing the final failure or success of the at-
tack. Finally, for both adversaries, the consequences depend on the success of this attack
and their own action. As an example, consider that under a given defence resource allo-
cation for protecting national critical installations, we consider possible attacks of a terrorist
organisation and the corresponding recovery plans. Thus, we are devising a security contin-
gency plan. Figure 11 depicts the problem graphically.

(a) Influence diagram (b) Game tree (m =n = 2)
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On one hand it shows a coupled influence diagram (an influence diagram for each participant
with a shared uncertain node and a linking arrow). The influence diagram shows explicitly
that the uncertainty associated with the success of an attack S is probabilistically dependent
on the actions of both the Attacker and the Defender: S|a,d. Thus, the utility functions over
the consequences for the Attacker and the Defender are, respectively, ua(a, S) and up(d, S).
The arc in the influence diagram from the Attacker’s decision node to the Defender’s reflects
that the Attacker’s choice is observed by the Defender. We also show a game tree (with only
two actions per adversary: m = n = 2) for the problem, reflecting its sequential nature. Note
that there are two utility values, for the Attacker and the Defender, at the tree terminal nodes.

In ANNEX1 we address the standard game theory analysis of this model, criticising the
main limitations of such approach, and formulate an alternative Adversarial Risk Analysis,
which we illustrate with an example in ANNEX4.

3.4 Sequential Defend-Attack-Defend

We proceed now with the Sequential Defend-Attack-Defend model, see Brown et al. (2006)
or Parnell et al. (2010) for various examples.

In this model, the Defender first deploys defensive resources. Then, the Attacker, having
observed such decision, performs an attack. Finally, the Defender tries to recover from the
attack as best as she can. Figure 12 shows coupled influence diagrams, with a shared un-
certainty node S, and a game tree representing this model. Nodes D; and D, correspond to
the Defender’s first and second decisions, respectively, and node A represents the Attacker’s
decision. The respective choices will be d; € D;, a € A and d, € D,, which we shall assume
continuous. Again, we shall assume that the only relevant uncertainty is the success level
S of the attack, which depends probabilistically on (d;,a) € D1 x A. We shall assume that
the consequences for the Defender and the Attacker will depend, respectively, on (d4, s, d,),
the effort in implementing her protective and recovery actions and the mitigated result of the
attack, and on (a, s, d,), the effort in implementing his attack and the result of the attack,
mitigated by the recovery action of the Defender.

"
" ! ! "
1 /1\ ¥ Yy
D; S A F-----> D, F S S K
L dy Ao (PPN s L da
/ D A Q) Dy %—. up,ua

(a) Influence diagram (b) Game tree (m =n =2)

As an example, consider a case in which a Government decides how to allocate security
resources to an airport installations; then, the terrorists, having observed them, perform an
attack. Finally, the Government tries to recover as best as possible from such attack.

In ANNEX2, we provide a full description of the Defend-Attack-Defend model through
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both a game theoretic analysis and the ARA approach. ANNEX4 contains a detailed exam-
ple.

3.5 Sequential Defend-Attack with Private Information

Our final basic model will be the Sequential Defend-Attack model with Defender’s private
information, i.e. information that she does not want the Attacker to know. This is the case
when e.g. the Defender wants to keep secrecy about vulnerabilities of sites she is trying to
protect, as this information can be used by the Attacker to increase the chances of success
and the expected impact of an attack. In this model, the Defender moves first by choosing
a defence and, then, having observed it, the Attacker moves by choosing an attack. An
example of this situation is given by an Attacker who gets to observe how the Defender
allocates her resources among the critical installations she wants to protect before deciding
his attack. Note that the Defender’s decision allocating resources to protect different critical
installations might signal to the Attacker about the sites’ vulnerability and importance for the
Defender, which is the type of information she wants to keep secret. This kind of applications,
with the corresponding game theoretic analysis, has been considered e.g. by Powell (2007),
Zhuang et al. (2010), and Zhuang and Bier (2010, 2011).

Assume that the Defender and the Attacker have, respectively, sets D and A of possible
defences and attacks. We shall also assume that the success level S of an attack is uncer-
tain. The private information (e.g., vulnerabilities) is represented by V, whose value is known
by the Defender, but not by the Attacker. This affects the chances of success of an attack,
as well as its impact. Finally, for both adversaries, the consequences depend, in addition,
on the success of this attack and their own action.

(a) Influence diagram (b) Game tree (m=n=2)

Figure 13 depicts the problem graphically. The coupled influence diagrams show explicitly
that the uncertainty associated with the success of an attack S is probabilistically dependent
on the actions of both the Attacker and the Defender, as well as on v. For example, if v repre-
sents a site’s vulnerability, this probability will be higher as vulnerability gets higher, the rest
of factors remaining fixed. The utility functions over the consequences for the Defender and
the Attacker are, respectively, up(d,s,Vv) and ua(a, s, V), reflecting that the consequences
depend also on V =v. The arc in the influence diagram from the Defender’s decision node
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to the Attacker’s reflects that the Defender’s choice is observed by the Attacker. The arc from
@ to @ reflects that v is known by the Defender at the time she makes her decision. The

lack of arc from @ to |A]indicates that v is not known by the Attacker at the time he makes
his decision.

We also show the corresponding game tree. To simplify the figure, we only show two
actions per adversary: D = {d;,d,} and A = {a;,a,}; two possible outcomes (failure or
success) of an attack: S € {N, Y }; and two possible values for V € {vy,v,}. The game tree
reflects the sequential nature of the problem, as well as the asymmetric information. The fact
that the Attacker does not know what is the value v at the time he must move is displayed
using information sets (drawn as dashed lines), a standard element of games with imperfect
information Harrington (2008).

In ANNEX3 we describe in more detail the basic features of this model. ANNEX4 includes
a detailed numerical example.
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4. Adapting the Templates

In this section, we illustrate how the basic templates may be adapted to take into account
the complexities in real SECONOMICS case studies as reflected on those in WP1, WP2,
WP3. The above models should be seen as such: templates reflecting basic dynamics
between an attacker and a defender. Some of the simplifications include restrictions to
discrete decisions, just one uncertainty node,.... Going through the case studies will allow
us to revise and propose more complex models that cater for further realism. Here we
shall illustrate how these basic models may be compounded to provide a security resource
allocation model in a spacial setting.

Assume that we are supporting an agent (She, the Defender) in protecting some kind
of critical or transport infrastructure from the attacks of another agent (He, the Attacker).
We assume that both agents operate monolithically. The infrastructures have a value, as
specified below. The Defender aims at preserving such value; the Attacker aims at obtaining
as much value as possible.

The infrastructures can be divided into adjacent cells (i, j), representing e.g. metro sta-
tions, or transformers within a major national electric infrastructure. Each cell has a value v;
which aggregates all assets (information, human resources, money,...) available at this cell.
At the start, the Defender has resources R} to protect the installations under concern. This
might include policemen, vehicles, cameras, arms, money and others. For our proposal, we
shall assume that there is just one type of resource, which is discrete, but this might not
always be the case. They allocate resources dij1 > 0tocell (i,]), fulfilling the constraint

> _di <Rg.
j

The Attacker has also attack resources R, (human resources, arms, vehicles, money and
others) that he will use to deploy different types of attacks. Again, we assume that there is
just one type of resource, which is discrete. They allocate attack resources a; > 0 to cell

(i,]), satisfying the constraint
Zaij < Ra.
ij

Based on the initial resource allocation and the type of attacks, the Defender will have avail-
able R3 resources after the attacks take place. They will deploy resources dij2 >0tocell(,))
to recover from the attacks satisfying the constraint

> df <RS.
j

Recovery resources will typically be related, but not necessarily coincide, with the initially
deployed resources. For example, security staff who are too far away will not be able to be
displaced for recovery in time.

We shall assume that the dynamics of the Defender and the Attacker can be described
with a Sequential Defend-Attack-Defend model, represented in Figure 14 as a coupled influ-
ence diagram. At a first stage, the Defender makes its initial resource allocation d* = {dijl
for each cell (i, ) within the infrastructure. The Attacker observes these and launches his
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attacks by allocating resources a = {aj} to each cell (i,j). The success of these attacks

is represented through s; = {s}}. Depending on the results of these attacks, the Defender
makes his recovery decisions d? = {d?}, which lead to the final level of Attacker success

s, = {s3} for each cell within the installations. The utility obtained by the Defender depends
on how the attack levels of success s, after the recovery stage affect the installations assets
at each cell v = {v;} as well as its defensive investments d* and d? at the first and second
stages, respectively; the utility obtained by the Attacker depends on the attack levels of suc-
cess s, at the last stage and its offensive resource investments a. The set of feasible actions
for both the Defender and the Attacker are subject to the above resource constraints.

| }

D1 Dr_) uUp

//

A uUA

Figure 14: Coupled influence diagrams for the security resource allocation problem

Globally, we may view that each cell is assigned a Sequential Defend-Attack-Defend
model, with all models coordinated by resource constraints and value aggregation for both
agents.

We illustrate this model in detail in ANNEX5, showing how to solve it through ARA.
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5. Conclusions

In this deliverable, we have provided the analysis of five template models aimed at devis-
ing strategies for the protection of critical infrastructures or, more generally, at supporting
security policy making. The templates are based on the adversarial risk analysis frame-
work, which aims at providing models for the decision making of Defender when facing the
decisions of the Attacker, the two agents involved in the problem. The models differ from
each other in the way and order in which the possible attacks and defences take place within
the sequence of events: Simultaneous Defend-Attack; Sequential Defend-Attack; Sequential
Attack-Defend; Sequential Defend-Attack-Defend and Sequential Defend-Attack with Private
Information.

We have started describing how these templates may be adapted to realistic problems,
providing in each case a security example. We have discussed for all the models the stan-
dard game theoretic solution as a starting point to discuss our methodology, based on ad-
versarial risk analysis. We have also illustrated how the templates may be adapted in more
realistic problems, specifically in a security resource allocation problem within a spacial set-
ting. Finally, we have also discussed issues regarding opponent modelling.

We shall further explore and adapt the templates to the cases proposed in WP1-WP3.
WP4 will provide ideas about what to model within the relevant utility functions. We aim also
at combining the models here proposed with those in WP6. On the other hand, WP7 will
determine which of these models may be relevant in general security problems, which would
be then implemented in the SECONOMICS tool delivered by WP8.
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ANNEX1. Sequential Attack-Defend Model

We describe now in more detail the Sequential Attack-Defend Model, introduced in Section
3.3, starting with the standard game theory analysis. We then provide the adversarial risk
analysis of such model, pointing out the advantages of such approach with respect to the
game theoretical one.

A Game Theoretic Analysis

We briefly describe first how standard game theory solves the Sequential Attack-Defend
decision problem. The game-theoretic approach requires the probability assessment over S,
conditional on (a, d). As the Attacker and the Defender may have different assessments for
the success S, these will be represented by pa(S = 1]a,d) and pp(S = 1|a, d), respectively.
The solution does not require the Defender to know the Attacker’s probabilities and utilities,
since she observes the Attacker’s actions, but the Attacker needs to know the Defender’s.

To solve the problem, we need the expected utilities of players at node @ of the tree
in Figure 11. The expected utility that the Defender obtains when the decisions are (a,d) €
AXxDis

Y@, d) = pp(S =0la,d) up(d, S =0) + pp(S = 1Ja,d) up(d, S = 1).

We compute ya(a,d) symmetrically for the Attacker. Then, the Defender's best defence
against the attack a is
d*(a) = argmaxy.p¥p(a,d), Va € A. (12)

Under the assumption that the Attacker knows how the Defender will solve her problem, the
Attacker’s best attack is
a* = arg max,. ,¥a(a, d*(a)).

The solution (a*, d*(a*)) is a Nash equilibrium.
Since it is unrealistic that the Attacker knows the defender beliefs and preferences, we
perform an ARA analysis.

The ARA Analysis

In principle, in the ARA approach the Defender sees the Attacker’s attack a and then she
can only reply with her best defence by computing d*(a) as in (12). The vector (a;, d*(a));L;
may be viewed as a contingency plan.

The ARA approach may help us in evaluating preparedness by thinking about the problem
faced by the Attacker, whose aspect is described in the tree in Figure 15, in which the
Defender decision is presented as an uncertainty. To solve his problem, the Attacker would
need {pa(d|a), pa(s|a,d),ua(a,s)}. Then, he would compute the expected utility of each
attack through

Ya(@) = _pad[a)| > pa(sla, d)uaa,s)|,

deD sesS
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where § = {0, 1}, and find the optimal attack a* maximising va(a). Since we do not know ua
and the pa’s, we assume uncertainty about them through

F = (Pa(d|a), Pa(s|a, d), Ua(a, s)).

(a) Influence diagram (b) Game tree (m =n =2)

We, then, compute the random expected utility through

Va(a) = Z Pa(d|a) Z Pa(s|a, d)Ua(a, s)|,

deD sesS

building the distribution Pp(A = a), defining the beliefs of the Defender about the eventual
attacks. Pp(A = a) will be approximated through

#{a = argmax, . ,0x(x) }
N

Po(A=a)= , Va e A,

where {w,'i(a)}::':l is a suitable sample from Wa(a).
As in other cases, we proceed by simulation through

Simulation for the Sequential Attack-Defend problem
For k=1toN
For j=1ton
Generate {pj(d|a;), pk(s(a;, d), ui(ay, )} ~ F
Compute 1£(a5) = Ygep PE(dIas) | Cyes PGSl )uk(as, s)|
Compute a* = argmax, ., ¢5(x)
Po(a”) = po(a”) + 1
Po(2a;) = po(a;)/N, V]

Po(a) may serve to evaluate preparedness, by telling us the most likely attack of the Attacker.
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Note that, of all the three elements in F, Pa(s|a,d) and Ua(a,s) may be reasonably
guessed through intelligence. However, Pa(d|a) requires considering strategic elements
and may lead to recursions of the type considered in Section 3.2.

An example is included in ANNEX4.
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ANNEX2. Sequential Defend-Attack-Defend Model

We describe now how we may solve the Sequential Defend-Attack-Defend introduced in
Section 3.4.

A Game Theoretic Analysis

A game-theoretic approach requires the Defender to know the Attacker’s utilities and proba-
bilities, the Attacker to know the Defender’s, and, furthermore, that all this is common knowl-
edge. Let these utility functions be up(d;, s, d;) and ua(a, s, dy), respectively, and their proba-
bility assessments about the success of attack be pp(S = s|d;, a) and pa(S = s|d;, a). Then,
we may compute a solution using backward induction as follows.

At node D, of the game tree in Figure 12, the Defender’s best response after each ob-
served (d;,s) € D, x S'is

dy(dy, s) = argmaxgy,.p, Up(d1, S, da). (13)

Under the common knowledge assumption, the Defender’'s behaviour at D, can be antici-
pated by the Attacker. Thus, at node S, the Defender’s expected utility associated with each
(d1,8) € Dy x A,

Yp(dy, @) = /uD(dl,s,dz*(dl,s)) po(S =s|dy, a) ds, (14)
and the Attacker’s,
Q/JA(d]_, a) = /UA(a, S, d;(dl, S)) pA(S = S‘d]_, a) dS,

are known to both of them. Then, the Attacker can find his optimal attack decision at node
A, after observing the Defender’s first move d, € D, by solving

a*(dy) = argmax,e 4 ¥a(ds, ).

Knowing this, the Defender can find her maximum expected utility decision at node D,
through

d; = argmaxy .p, ¥o(ds, a*(dy)).

Therefore, under common knowledge, game theory predicts that the Defender will choose
d; € D; at node Ds; then, the Attacker will respond by choosing attack a*(d;) € A at node
A; and, finally, the Defender, after observing s € S, will choose d;(d;, s) € D, at node D,.

The ARA Approach

We now give up the strong common knowledge assumption and provide an ARA analysis
to support the Defender. For this, we treat the Attacker’s decision at node A as uncertain
from the Defender’s viewpoint and model such uncertainty. This is reflected in the influence
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(a) Influence diagram (b) Decision tree (m=n =2)

diagram and the decision tree in Figure 16, where the Attacker’s decision node has been con-

verted into a chance node, by replacing | A |with @ The Defender needs to assess pp(A|d;),
her predictive distribution about what attack the Attacker will choose at node A against each
d; € Dy, besides the (more standard) assessments up(dy, S, dz) and pp(S|dy, @).

Given these, the Defender can solve her decision problem working backwards the tree
in Figure 16. At node D,, she can compute her maximum utility action d;(d;, s) for each
(d1,8) € D1 xS, asin (13). Afterwards, she will obtain at node S her expected utility ¢p(d;, @)
for each (d;,a) € D1 x A, as in (14). At this point, she will use her probabilistic assessment
about what the Attacker will do, pp(A|d;), to compute her expected utility at node A for each
dl € Dy,

Yp(ds) = /@/)D(dl, a) po(A = a|d;) da.
Finally, she can find her maximum expected utility decision at node D,

dy =argmaxy .p, ¥o(ds).

Based on this approach, the Defender’s best strategy is to choose first d; at node D,, and
later, after observing s € S, choose d;(d;, s) at node D.

Let us discuss now the assessment of pp(A|d;). Alternatively to the standard risk analysis
approach as in Ezell et al. (2010), we propose ARA to model the Defender’s uncertainty
about the Attacker’s decision assuming he is an expected utility maximiser and taking into
account that the Defender’'s uncertainty stems from her uncertainty about the Attacker’s
probabilities and utilities associated with his decision problem. The analysis of the Attacker’s
decision problem, as seen by the Defender, is shown in Figure 17, where the Attacker’s
probabilities and utilities need to be assessed from the Defender’s perspective, based on all
the information available to her. Again, should this kind of information not be available to the
Defender, she could use a noninformative distribution to describe pp(A|d,).

Therefore, to elicit pp(A|d;), the Defender needs to assess ua(a, s, d;) and pa(S|di, a), as
well as pa(D2|d1, &, s). In general, she will not know these quantities, but she may acknowl-
edge her uncertainty about them through a probability distribution F = (Ua(a, s, dz), Pa(S|d1,
a), Pa(D2|dy, &, s)) and solve the perceived Attacker’s decision problem using backward in-
duction over the decision tree in Figure 17 as follows, propagating the uncertainty in F to get
the random variable A*(d,) for each d;:

» At chance node D,, compute

(dl, a, S) — \UA(dl, a, S) = /UA(a, S, dz) PA(D2 = d2|d1, a, S) dd2
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(a) Influence diagram (b) Decision tree (m = n = 2)

» At chance node S, compute

(dl, a) — \UA(dl, a) = /WA(d]_, a, S) PA(S = S|d1, a) ds.

» At decision node A, compute

d; — A*(d;) = arg max,. , Va(d1, a).

Then, the Defender’s predictive density pp(A|d;) over attacks, conditional on her first defence
decision dg, is given by

/o ’ Po(A = x|d;)dx = Pr(A*(dy) < a).

This distribution could be approximated by Monte Carlo as follows

Monte Carlo approximation of Defender’s predictive density pp(A|dy)

1. For each d;

For k=1toN

Draw (uﬁ(a, s, dy), p&(S|dy, @), pE(D2|dy, a, s)) ~F
At chance node D,, compute

(dy, a,8) — ¥;(dy, a,8) = /uﬁ(a, s,d;) pr(Dy = dy|dy, 2, s) dd,
At chance node S, compute
(@2,2) = 0@ ) = [ (e 2,0) S = sl 2) as

At decision node A, compute

d; — aj(dy) = argmax, 4 wf(dl, a)

2. For any a
‘ Approximate foa po(A = x|d;) dx through #{1 <k <N: al(d;) < a}/N.

We have seen how the assessment of pp(A|d,) is straightforward after the Defender’s
elicitation of F. However, the assessment of P5(D;|d1, &, s) within F could be problematic,
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as the Defender may want to exploit information available to her about how the Attacker
analyses her decision problem. Of course, if there is no information that the Defender can
use, she will put a noninformative distribution over P5(D,|d1, a,s). The Defender may con-
tinue this recursive analysis, until eventually she has no more information to analyse the next
level of the hierarchy of recursive decision models, much as described in Section 3.2.2. The
recursive analysis will always stop at some point, perhaps after some simplifications leading
to an heuristic distribution to model an adversary’s thinking at some step of the recursive
analysis, as illustrated in Rios Insua et al. (2009) for an auction problem.
We provide an example in ANNEX4.
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ANNEX3. Sequential Defend-Attack with Private Informa-
tion Model

We describe now how to solve the model presented in Section 3.5.

The game theoretic approach to games with private information is to model them as
games with imperfect information, in which Nature chooses first a possible instance of the
Defender’s private information and this move from Nature is observed by her, but not by the
Attacker.

A Game Theoretic Analysis

We briefly describe how standard game theory solves this model with private and asym-
metric information. This is an example of a signaling game, see Aliprantis and Chakrabarti
(2000); Cobb and Basuchoudhary (2009). The game-theoretic approach requires the prob-
ability assessment of S, conditional on (d, a, v). As the Defender and the Attacker may have
different assessments, these will be represented by pp(S|d, a,Vv) and pa(S|d, a,v). The At-
tacker’s prior beliefs about the Defender’s private information V are represented through
the probability distribution wa(v). All these probabilities, and the utilities up(d, s, v) and
ua(a, s,v), are common knowledge. A solution proceeds, then, as follows.

First, we define strategy functions for each player. As the Defender knows the value of
V, her strategy function is of the form v — d(v) € D. As the Attacker makes his decision
knowing the Defender’s, his strategy function is of the form d — a(d) € .A. We compute the

expected utilities of both players at node @ of the tree in Figure 13, for any pair of decisions
(d,a) € D x A and value of private information V = v:

Yp(d,a,v) = /uD(d,s,v) pp(S =s|d,a, V) ds, (15)
Ya(d,a,v) = /uA(a, S,V) pa(S =s|d, a,v) ds. (16)

The Attacker’s best response against a defence d is
a*(d) =arg maxaeA/wA(d, a,v) ma(V =v|d) dv, a7)

where ma(V|d) represents the Attacker’'s updated beliefs about the Defender’s private infor-
mation, after having observed her defence action. We show how to determine 7a(V |d) below.
For now, we shall assume it is known. Under the assumption that the Defender knows how
the Attacker will solve his decision problem for any d € D, the Defender’'s maximum expected
utility decision, given that she knows the value of V = v, would be

d*(v) =argmaxy.p ¥p(d,a*(d),v).

As commonly accepted in game theory, we allow for randomised strategies. Assuming
that D and A are continuous, we define

I'ID={7TZ m(d) > 0 vd EDand/W(d)dd =1}
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and
I'IA:{w: w(a)EOVaeAand/w(a)dazl}
A

as their associated sets of randomised strategies. Hence, d*(v) and a*(d) have associated
probability distributions 7g-«,)(d|v) € Mp and ma+@qy(ald) € M4, respectively.

We now show how the probability distribution mg-«)(d|v) is related with wa(V = v|d).
Under the assumption that the Attacker knows how the Defender will solve her problem for
any v € V, he can update his prior knowledge about V after observing a defence d, through
Bayes' rule:

7TA(V = V|d) X 7TA(V = V) Wd*(v)(D =d ‘V),

which is the probability distribution needed to compute (17).
A game theoretic solution can be determined, then, by finding a pair of strategies (mq-« (),
Ta+(g)) Which are a fixed point solution of the equations

Ta=(v) = arg maxﬂeﬂD/D {/A z/;D(d,a,v)wa*(d)(a|d)da] m(d)dd, W €V,
(18)

Tax(d) = arg maxﬂenA/A [/V @Z)A(d,a,v)wA(v)wd*(v>(d|v)dv} m(a)da, vd € D.

Note that a fixed point solution of the equations in (18) is a Nash equilibrium. In addition, we
have assumed that the Attacker’s learning behaviour follows Bayes' rule.

The ARA Approach

For a more realistic approach, we weaken the common knowledge assumption. We con-
sider the Defender’s decision problem as a standard decision analysis problem, illustrated in
Figure 18, with the Attacker’s decision node perceived now as a random variable. Similarly,

her decision tree shows uncertainty about the Attacker’s decision by replacing with @

D /S\ @
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i / /
/ ’ ’
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(a)Influence diagram (b)Decision tree

Assume, the Defender has already assessed pp(S|d,a,v) and up(d,s,v). She also
needs pp(A|d), which is her assessment of the probability that the Attacker will choose attack
A = a, after observing that she has chosen defence d. Obtaining this will require that the
Defender analyses the problem from the Attacker’s perspective. Assume for a moment that
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she has assessed pp(A|d). Then, the Defender can obtain her maximum expected utility
defence by solving the tree in Figure 18 using backwards induction as follows:

» At chance node S, compute ¢p(d, a,Vv) for each (d, a,v) as in (15).

» At chance node A, compute
(d,v) = ¢Yp(d,v) = /z/zD(d,a,v) po(A = a|d) da.

» At decision node D, solve

v — d*(v) = arg maxy., ¢o(d, V).

To assess pp(A|d), the Defender must place herself on the Attacker’s shoes and solve
his decision problem from her perspective. Figure 19 represents the Attacker’'s decision
problem, as seen by the Defender.

(a)Influence diagram (b)Decision tree

Note that the Defender’s decision is represented as a random variable in the Attacker’s

analysis, as it is not under his control. The arrow from @ to |A]in the influence diagram
indicates that the Defender’s decision will be known to him at the time he has to decide. As
the Attacker does not know the Defender’s private information v, his uncertainty is repre-
sented through a probability distribution pa(V), describing the Attacker’s (prior) beliefs about
the Defender’s private information. We assume that the Defender analyses the Attacker’s
decision considering that he is an expected utility maximiser and that he uses Bayes rule to
learn about the Defender’s private information from the observation of her defence decision.

Thus, the arrow in the influence diagram from @ to @ which represents probabilistic de-
pendence, can be inverted to obtain the Attacker’s (posterior) beliefs about v: pa(V|D = d).
However, to obtain this we need to assess pa(D|v) first.

Should the Defender know the Attacker’s utility function ua(a, s, Vv) and his probabilities
pa(S|d, a,v) and pa(V|d), she would be able to anticipate his decision a*(d) for any d € D
by solving backwards the tree in Figure 19 and computing his expected utility )4 as follows:

» At chance node S, compute ya(d, a,Vv) for each (d, a,v) as in (16).

» At chance node V, compute for each (d, a)

Ya(d, a) = /@Z)A(d,a,v) pa(V =v|d) dv. (19)
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« At decision node A, solve

d — a*(d) = argmax,. 4 ¥a(d, a).

However, the Defender does not know (pa, Ua), but she has beliefs about them, say (Pa, Ua) ~
F, which will be relevant in her analysis of the Attacker’s decision problem. This distribution
will induce distributions Wa(d, a,v) and V,(d, a) on the Attacker's expected utilities defined
in (16) and (19), through, respectively,

Va(d,a,v) = /UA(a,s,v) Pa(S =s|d,a,v) ds

and
Va(d, a) =/1UA(d,a,v) Pa(V =v|d) dv,

for (Pa,Ua) ~ F. Then, the Defender’s predictive distribution about the Attacker’s response
to any of her defence choices d is defined through

ppo(A = ald) = P [a = arg max,. 4 \UA(d,x)], Va e A.

The Defender may use Monte Carlo simulation to approximate pp(A|d) by drawing N sam-
ples {(p',f\,uk)}::':l from F, which produce {4k}, ~ W,, and approximating pp(A = ald)
through

Pop(A=ald)=#{1 <k <N: a'(d)=a}/N, Vac A4,

when A|d is discrete, or
Po(A<ald)=#{1 <k <N: a(d) <a}/N, Vac A,

when A|d is absolutely continuous.

To sum up, the elicitation of F = (PA(S|d, a,V), Pa(V|d), Ua(a, s, V)) allows the Defender
to solve her problem of assessing pp(A|d). The Defender may have enough information and
judgment available to directly assess PA(S|d, a, v) and Ua(a, s, v). However, the assessment
of Pa(V|d) requires a deeper analysis, as it has a strategic component.

Specifically, assuming that the Attacker has prior knowledge over V modelled through
pa(V), his posterior beliefs about V, after he observes D = d, become:

pa(V =v|d) oc pa(V =V) pa(D =d|v), (20)

where pa(D = d|v) models the Attacker’s probabilistic assessment of what defence she
would choose conditional on each possible value of her private information. The elici-
tation of pa(D|v) requires an analysis of how the Attacker analyses the Defender’'s deci-
sion. Assuming he thinks that she is an expected utility maximiser, and that the decision
problem she tries to solve is as in Figure 18, with Al representing the Attacker’s decision
within this level of recursive modelling, the Defender’s elicitation of a probability distribution
G = (Up(d,s,v),Pp(S|d,a,v), Pp(A|d)) representing the Attacker's probabilistic assess-
ments of her utilities and probabilities, allows her to solve her problem of assessing pa(D|v)
by evaluating a tree like the one in Figure 18 as follows:
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» At chance node S, compute for each (d, a, Vv)

(d,a,v) —» V¥p(d,a,v) = /UD(d,s,v) Pp(S =s|d,a,Vv) ds.

« At chance node A', compute for each (d, v)

(d,v) - ¥p(d,v) = /WD(d,a,v) Pp(A* = a|d) da.

« At decision node D, solve for each v

vV — pa(D =d|v) =Pg [d = arg max,.p Vp(X,V)|, vd € D. (21)

As the Attacker’s beliefs represented within G are assessed from the Defender’s perspective,
her uncertainty about these beliefs when acknowledged within G will produce the distribution
Pa(D|v) in (21), representing what the Defender believes to be pa(D|v). Note also that pa(V)
in (20) represents the Attacker’s prior knowledge about the Defender’s private information.
As the Defender does not have access to this distribution, we will directly elicit it from the
Defender’s perspective: Pa(V) represents what she believes to be pa(V), with the proba-
bilistic model P, acknowledging her confidence on her assessment of pa. Then, from the
Defender’s perspective, the Attacker’s learning about V modelled in (20) becomes

Pa(V =v|d) o Pa(V = V) Pa(D =d|v). (22)

The only difficulty for the Defender at this step, in order to obtain Po(D|v), is her assess-
ment of what she thinks to be the Attacker's assessment of the probability model used by
her to predict his attack as a response to her chosen defence: Pp(Al|d) in G. We may go
further in the hierarchy of nested decision models and try to support the Defender in the
assessment of Pp(Al|d) through the analysis of how the Attacker, in his analysis of her deci-
sion problem, thinks the Defender will analyse his decision problem, similarly as described in
Section 3.2.2. However, if no information is available at this level, we can end the hierarchy
of analysis with a reference distribution over Pp(A®|d). This would allow the computation of
a recommendation for action to the Defender. Clearly, should this recommendation be sen-
sitive to the reference distribution, this would indicate that there is still relevant information
that needs to be elicited before reaching a robust enough recommendation. In such case, it
would be desirable to collect more data and/or judgement through intelligence.
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ANNEX4. Examples

We provide now examples for all the models discussed in the previous sections. These ex-
amples have a double motivation: on one hand, they are intended to illustrate the theoretical
results of the ARA analysis developed throughout this deliverable. On the other hand, they
will also serve as links to work packages WP1, WP2 and WP3, which are responsible of the
case studies that SECONOMICS is dealing with. Specifically:

» The first example, for the Sequential Defend-Attack problem, is related with the issue
of anti-social behavior (e.g., graffiti) in metro installations, as described in WP3.

» The second example, for the Simultaneous Attack-Defend problem, illustrates a deci-
sion making problem of a transport operator in deploying new security measures, as
proposed in WP1.

» The third example, for the Sequential Attack-Defend problem, reflects the problematic
of the case study of protecting a critical infrastructure as in WP2.

» The fourth example, for the Sequential Defend-Attack-Defend problem is also related
with a decision making problem of a given transport operator in employing new security
measures, as in WP1.

» The fifth example, for the Sequential Defend-Attack problem with Private Information
also considers protection of critical infrastructures, being therefore related with WP2.

Sequential Defend-Attack model: security staff deployment strategy
against vandalic acts

As an illustration for this type of model, we propose a simple example concerning security at the
installations of a given metro transport operator, regarding some kind of antisocial behaviour, e.g. acts
of vandalism as painting graffiti or scratching the windows of the trains, as discussed in more detail
in deliverable D3.2 - Urban public transport requirements. In this regard, the metro Chief Executive
Officers (M-CEO, the Defender) have reported several acts of vandalism and urban violence from
anti system groups against their installations and equipment. The Defender is considering several
strategies to protect their fixtures against possible attacks of such anti system groups (the Attacker).
In a first approach, M-CEQ'’s strategies can be thought of how many additional staff and security
members are going to be deployed in the metro installations to control the agitators, with respect
to the usual number of personnel deployed in standard circumstances. Specifically, four different
strategies di,d», ds3, d4 are being considered respectively consisting of deploying 10, 20, 40 or 50
additional staff and security members in the metro installations.

The Attacker will know the action chosen by the Defender, as such information will be dissemi-
nated by the media. We assume that the Attacker aims at causing widespread damage in the metro
fixtures, attacking security as well as trains and other installations. Specifically, the Attacker is plan-
ning three different types of attack, a;, a,, ag, depending on what means they will use to cause dam-
ages: (1) only the strength of their hands; (2) same as before plus using physical weapons as bricks,
hammers, containers, or stain balls to break the windows and/or dent the bodywork of the trains; or
(3) same as before plus using chemical weapons, as Molotov cocktails, paint, silicon or corrosive
acids, to cause more serious harms. We also assume that there are three different levels of success
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of a given attack: failure (s = 0), moderate damages (s = 1), and severe damages (s = 2), on any of
the targets considered by the Attacker. We denote this set of possible outcomes by S.
We assume that we are able to assess from the Defender:

« Metro’s utility function up(d, s), which incorporates the increase in security, costs, and other
possible consequences, and the probability distribution pp(S = s|d, a) associated with the deci-
sion problem (Figure 6), shown in Tables 1a, 1b and 1c, respectively (pp(S = 0|d, a) is implicit).

« The Defender presumes that the anti system groups will face a decision problem similar to that
described in Figure 7. She assesses that the random utilities and probabilities (Ua, Pa) ~ F of
the Attacker are as in Tables 1d and le. The probabilities PA(S = {0, 1,2}|d, a) are modelled
through Dirichlet distributions Dir (a1, az, az), with expected values «; /(a; +az +ag), 1 =1,2,3,
respectively, matching the Defender’s probabilities. For example, PA(S = {0,1,2}|d;,a;) ~
Dir(4.5, 2.5, 3) means that, given that the Defender will deploy a defence d; and the Attacker
will then choose an attack a;, she assesses the Attacker’s beliefs about the output of his attack
(S =0,S =1orS =2) through point estimates probabilities Pao(S = 0|d;,a;) =4.5/(4.5+25+
3) = 0.45, pa(S = 1|d;,a;1) = 0.25, and Pa(S = 2|d1,a;) = 0.3 (with corresponding variances
0.023, 0.017, and 0.019).

Table 1: Defender’s assessments

(@) up(d, s) (b) po(S =1/d, ) (c) po(S = 2|d, a)

s=0 s=1 s=2 a ar as a ar as

d; 200 50 10 d, 025 045 0.5 d 03 035 04
do 100 20 10 d> 02 025 0.35 d 025 03 0.35
ds 80 10 0 d; 015 0.2 0.25 dz 02 025 0.3
ds 50 0 0 ds 01 015 0.2 ds 005 0.1 0.5

(d) Ua(a, s) (e) Pa(S ={0,1,2}/d,a)
s=0 s=1 s=2 a ar as

a; 0 (50, 60, 80) Tri(80, 100,100) di; Dir(4.5,2.5,3) Dir(2,45,35)  Dir(L,5,4)
a, 0 Tri(40,50,60) Tri(60,80,90) d, Dir(5.5,2,25) Dir(4.5,25,3) Dir(3,3.5, 3.5)
as 0 Tri(25,40,50) Tri(60,70,90) d; Dir(6.5,1.5,2) Dir(55,225) Dir(4.5, 2.5,3)

ds Dir(8.5,1,05) Dir(7.515,1) Dir(6.5,2,1.5)

Note: Tri(min, mode, max) and Dir (a1, a2, ag) Stand, respectively, for triangular and Dirichlet distributions.
To solve the Defender’s decision problem, we need to assess |6D(aj|di), i=1,...,m,j=1,..,n,

her predictive distribution about what the Attacker will do, once they know her defence. Then, she
would find the optimal defence. Based on (7), she would proceed as follows:
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Simulation for the Sequential Defend-Attack problem

1. Estimate pp(aj|d;) for each dj
For i=1tom
For k=1toN
For j=1ton
Draw (uf,pX) ~ (Up,Py) =F for all possible outcomes S € S
Compute /¥(d;, aj) = > ses pi(s|ds, aj) uﬁ(aj, s)
Compute a* = argmax,. 4 ¥5(ds, x)
Po(a”|di) = pp(a*|ds) + 1
Pn(a;|di) = Po(a;|di)/N, V]
Compute optimal defence
or i=1tom

Compute p(d;) = 2?:1 Po(ajdi) | D ses Po(s]di, aj)] up(ds, 5)
Compute d* = argmax tp(d;)

N

In a run with N = 10, 000, we got the approximation for the probabilities pp(a|d) shown in Table 2.

Table 2: Expected probabilities pp(a|d)

pp(ald) ap as as
o 0.2493 0.4002 0.3505
do 0.3112 0.2818 0.4070
ds 0.2909 0.3026 0.4065
ds 0.1630 0.3116 0.5254

The Defender can now solve her decision problem, obtaining that her maximum expected utility de-
fence is d* = d; with (Monte Carlo estimated) expected utility 70.09. Therefore, the best strategy for
the Defender would be the deployment of 10 additional security staff, since this strategy maximizes
her expected utility. On the other hand, and as assessed by the metro executives in Table 2, the
most probably attacking strategy chosen by the Attacker would be ay, i.e., using the strength of their
hands and physical weapons to cause as much damage as possible. The complete list of estimated
expected utilities is displayed in Table 3.

Table 3: Estimated expected utilities 7p(d)

¢p(d)
d; | 70.09
d, | 50.53
ds | 45.12
ds | 35.66
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Simultaneous Defend-Attack model: A decision making problem for a
transport operator

In this second example, we analyse a decision making problem concerning security issues in a trans-
port operator, considering whether or not to deploy new security measures. The case study described
in deliverable D1.3 Airport Requirements analyses this problem for Anadolu Airport, in Turkey.

The Airport Chief Executive Officer (A-CEO, the Defender) is considering whether to use (d;) or
not (d,) undercover marshals in the installations of the Airport to prevent terrorists from attacking the
airport’s fixtures, aircrafts or users (passenger, crew, staff). The terrorists (the Attacker) will not know
the action chosen by the Defender in their analysis about whether to try (a;) or not (ay) to perform a
terrorist attack. We assume that we are able to assess from the Defender:

Table 4: Defender’s assessments

(a)up(d, s) (b)po(S =1[d, a)

s=1 =0 a a

d; 0 80 d; 0.1 0

do 10 100 do 0.8 0
(c)Ua (a,s) (d)Pa (S = 1/d,a)

s=1 s=0 a; a,

a; Tri(50,100,100) 0 d; U(0,0.5) 0

a 100 Tri(0, 0, 50) do U(0.5,1) 0
(e)Un,(a,s) (OPA, (S = 1[d, &)

s=1 s=0 a; ao

a, Tri(0,100,100) 0 d; Tri(0,0,0.5) 0

a 100 Tri(0, 0, 100) do Tri(0.5,1,1) 0
(9)Up,(d, s) (h)Pp,(S = 1[d, a)

s=1 s=0 a as

d; (0, 40) U(60, 100) d; U0, b) 0

do U(0, 40) (60, 100) do b ~4(0,1) 0

Note: ¢/ (min, max) stand for uniform distribution.

« Her utility function up(d, s), which incorporates the increase in security, the costs, as well as
other possible consequences, and her probability distribution pp(S = s|d,a) associated with
her decision problem (Figure 9), shown in Tables 4a and 4b respectively.

« She considers that the terrorist threat may come from two different kinds of Attackers: Class |
with probability 0.8 and Class Il with 0.2. She also presumes that terrorists will face a decision
problem as described in Figure 10. The Defender assesses that the utilities and probabilities
of a Class | Attacker in (10) are (Ua,, Pa) ~ F|, see Tables 4c and 4d, and those of a Class Il
Attacker are (Up,, Pa,) ~ Fy, see Tables 4e and 4f.

« Based on the information available, the Defender thinks that a Class | Attacker is capable of
analyzing her problem as in Figure 9. She estimates that a Class | Attacker’s beliefs about her
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utilities and probabilities in (11) are (Up,, Pp,) ~ G, shown in Tables 4g and 4h. The Defender’s
confidence in these assessments leads her to elicit [, (D, = d1) as a beta distribution with mean
7a, (D) = d1) and precision 10, that is, M (D; = d;) ~ Be(o, 10 — ), where a = mp, (D = dq) x 10.
The Defender has no information to assess how a Class Il Attacker would analyse her prob-
lem. However, she believes that this Attacker estimates that she is more likely to choose dq,
specifically, that M, (Dy; = d;) ~ Be(75, 25).

* Finally, she assigns a noninformative unconditional distribution on what a Class | Attacker thinks
to be her beliefs over his choice of action: INp, (A|1 =a;) ~U(0,1).

To solve the Defender’s decision problem, we need to assess (A = a;), her predictive distribu-
tion about what the terrorists will do, where A is the mixture 0.8 A, + 0.2 A;, with A, (A,)) representing
the Defender’s beliefs about what attack in A = {a;,a,} a Class I (Il) terrorist will choose. Thus,

mp(A=a;) =0.8 mp(A = ay) +0.2 mp(A) = ay).

Based on (10) and (11), mp (A, = a;) could be estimated through Monte Carlo simulation as follows:

Simulation for the Class I terrorist
1. For k=1toN

Draw mp ~ I, = 4(0, 1)

Draw (ug,,ps,) ~ (Up;,Pp;) = G1

Compute d¥ = argmaxycp 2 .aca [256{0,1} up (d,s) pp (S =s|d a) |75 (A} = a)

2. Approximate m, (D1 =d;) through #, (D1 =dy) =#{1 <k <N: d¥=4d,}/N
Set a =y, (D =dy) x 10
Set fI,,(D; =d;) ~ Be(a, 10 — «)
3. For j=1toN
Draw 7y ~ Iy,
Draw (uﬁl!pﬁl) ~ (UAI’PAI) =F
Compute af = argmaX,c 4 Y qep | Dose{o.1} uj (a,s) pj (S=s|d,a) |#f (D1 = d)

4. Approximate mp(Ar = a;) through #p(Ar =a;) =#{1 <k <N: af=a,}/N

Similarly, 7p (A, = a;) can be estimated by Monte Carlo simulation as follows.

Simulation for the Class II terrorist
3. For k=1toN
Draw 75~ [y, = Be(75,25)
k k _
DraW (uAII’pAH) ~ (UAII7PAII) - FII

Compute a¥; = argmax,. 4 ZdeD 256{0,1} uEH(a, s) pEH(S = sl|d, a) ﬁKH(DH =d)

4. Approximate mp(Arr = a;) through Ap(Arr =ag) =#{1 <k <N: a%l =as}/N

In a run with N = 10,000, we got 7p(A; = a1) = 0.84 and 7p(A; = a;) = 0.39. Hence, mp(A = ay)
can be approximated by 7p(A = a;) = 0.8 7p(A; = a1) + 0.2 7p(A; = a1) = 0.75. In other words,
the Defender thinks that it is three times more likely that the terrorists (whether of Class | or ),
would perform a terrorist attack against the airport installations than the possibility of they remaining

inactive.
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The Defender can now solve her decision problem in (8), obtaining that her maximum expected
utility defence is d* = d; with (Monte Carlo estimated) expected utility 74.0, against d> whose ex-
pected utility is 45.9. Hence, the optimal strategy from the point of view of the Defender is to under-
cover marshals in the airport installations.

Sequential Attack-Defend model: protection of critical infrastructures

We consider now an example in which the integrity of a major national critical infrastructure is at risk,
due to threats of a terrorist organization. This example can serve as an illustration for the deliverable
of WP2, D2.3 National Grid Requirements, in which the UK National Grid is analysed in detail.

In this simplified version of the case study, let us assume that a Government (the Defender) needs
to protect two critical installations 1 and 2 within their National Grid gas and electricity infrastructure.
A terrorist organization (the Attacker) may perform a full attack over 1 (a;), a full attack over 2 (ay),
no attacks (as), or two low profile attacks over both installations (a4). On the other hand, we assume
that the Defender can deploy three different levels of defensive actions to recover herself against
the Attacker’s attack, with different levels of monetary and human resources to recover and fix the
possible damages produced by the Attacker. Specifically, we denote the three recovery plans by:
low-level plan (d;), medium-level plan (d;), and high-level plan (d3). When greater investments are
made, the recovery from the attack will be achieved in shorter times, but the indebtedness incurred
by the Government may be too onerous for the public budget. On the other hand, if the Defender
decides to invest less money, the recovery will be delayed and/or accomplished in an incomplete
manner, leaving the security of the critical installations into jeopardy. We shall simplify the problem by
regarding the attack as a binary outcome S € {0, 1}, representing its failure or success. The decision
tree for this problem would be as shown in Figure 20

We assume that we are able to assess from the Defender the following utilities and probabilities
summarized in Table 5:

Table 5: Defender’s assessments

(@) up(d, s) (b) po(S = 1[d, a)
dl dz d3 dl d2 d3
s=0 100 80 50 a; 0.7 0.4 0.05
s=1 20 10 0 a 0.6 0.3 0.05
as 0 0 0
ay 0.3 0.1 0.05
(c) Ua(a,s) (d) Pa(S =1|d,a) (e) Pa(d|a)
s=0 s=1 d1 dz d3 {dl,dz,dg}
a; 0 Tri(60,80,90) a; Be(6,4) Be(4,6) Be(2,8) a; Dir(2,3,5)
a, 0 Tri(50,70,80) a, Be(6,4) Be(4,6) Be(2,8) as Dir(2,3,5)
as 0 0 as 0 0 0 as Dir(7,2,1)
a, 0 Tri(45,60,70) a, Be(4,6) Be(3,7) Be(1,9) as, Dir(2.5,3.5,4)
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Figure 20: Decision tree for the Sequential Attack-Defend example

In a run with N = 10, 000, we got the estimated probabilities pp(a) shown in Table 6.

Table 6: Estimated probabilities for the different attacks

ai ay as ag
Po(a) | 0.5003 0.4666 0 0.0331

As we can observe, attacks a, and a, are regarded almost as equally likely by the Defender, and
much more likely than a4. In other words, the Government believes that the more realistic scenario,
according to their beliefs and information, is that the terrorist will perform a full attack, with almost
equal probabilities, over just one of the two installations.
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The associated contingency plan for recovery from attacks is shown in Table 7.

Table 7: Optimal recovery plan d*(a)

a, a ag
d*(a) d, dr dj

The estimated utilities yp(a, d) are shown in Table 8.

Table 8: Estimated utilities yp(a, d)

d, d» ds

a; | 44 52 475
a | 52 59 475
as | 716 73 475

From Tables 7 and 8 itis clear that the optimal strategy for the Defender is a medium-level recovery
plan, provided the terrorist will behave as they expect. Should the terrorists perform two low key
attacks against both installations, then the optimal strategy would be a low-level recovery plan, as in
this case the damages would be expected to be limited. Strategy as; (no attacks from the terrorist) is
actually neglected by the Defender, as they assess a zero probability to it.

Sequential Defend-Attack-Defend: defending transportation from ter-
rorist threats

We consider now how ARA may cope with a realistic example. For simplicity, we will follow here the
exposition in Sevillano et al. (2012), referring to defending a ship which needs to travel through the
Aden Gulf in face of piracy risks. However, this example can be easily adapted to other means of
transport and their involved installations as e.g. those related with the airport case study, as discussed
in deliverable D1.3 Airport Requirements.

Starting from the early 90’s, piracy has been a threat to international marine transportation and
fishing ships around the coasts of Somalia'. Since 2005, several international organizations have
expressed their worries about the increase in piracy acts. Nowadays, no ship is safe within several
hundred miles from the Somali coast, and this has become a major international security issue.
Somali pirates, originally dedicated to fishing, have traditionally claimed that the actual pirates are the
foreign fishermen who loot their fish. Piracy in Somalia may be explained in purely business terms,
see Carney et al. (2009), as there is actually a whole system supporting their activities. The elderly
act, de facto, as a government. Local businessmen provide funding. There is a clear organization as
attacks are undertaken by small groups of around ten individuals in fast offshore boats which depart
from a mothership. Once successful, around fifty pirates remain in the boarded ship, with around
fifty more pirates providing logistic support from the coast. Pirates have learned that ransom is more
profitable than theft and they reinvest part of their earnings in equipment and training.

We shall assume that we support a (large tuna fish) ship owner in deciding what defensive re-
sources to implement and, if attacked and hijacked, how to respond to Somali pirates demanding a
ransom in exchange of the kidnapped ship and crew.

1See the Wikipedia page on piracy in Somalia: http://en.wikipedia.org/wiki/Piracy in_Somalia
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Structuring the Somali Pirates Case

We describe here how to support a ship owner in managing risks from piracy in the coast of Soma-
lia, structuring the problem through a game tree. We shall use a Sequential Defend-Attack-Defend
model, see Brown et al. (2006), Parnell et al. (2010) or Rios and Rios Insua (2012), to formulate the
problem. The ship owner will pro-actively decide on a defensive strategy to reduce piracy risks, rang-
ing from different levels of deployed armed security to sailing through an alternative, much longer,
route avoiding the pirates completely. The pirates, who have a network of spies and observers in-
forming about security, cargo and crew in ships, will respond to the Defender’s move by launching (or
not) an attack with the intention of taking over the ship and asking for a ransom. If the Pirates’ oper-
ation is successful, the ship owner will have to decide on paying or not the ransom, or even asking
for the support of the nearby armed forces to release the ship. The ship is assumed to be of Spanish
ownership, with Spanish crew, for the economical computations involved.

Specifically, we shall assume that the ship owner (the Defender, She) initially decides on one of
the following four alternative defence actions (elements of D;):

df : Do nothing, i.e. no defensive action is taken.
dl1 . Use private protection with an armed person.
dl2 : Use private protection with a team of two armed persons.

df : Do the trip through the Cape of Good Hope, rather than the Suez Channel, thus avoiding
the Somali coast and a potential hijack.

Once the Defender has made her initial decision, the pirates (the Attacker, He) observe this and
decide whether to attack (a® € .A) or not (a° € A). The attack results in either the ship being hijacked
(S =1) or not (S = 0) by the pirates, with probabilities depending on the initial defence action chosen
by the ship’s owner. If the ship is hijacked, the Defender has the option of responding by either
(elements of D,):

dg : Doing nothing, i.e. not responding to the pirates’ demands, assuming all entailed costs.
d% . Pay the amount finally demanded by the pirates, thus recovering the ship and crew.
d22 . Ask for military support to release the ship and crew.

The asymmetric game tree shown in Figure 21 represents the sequence of decisions and events
faced by the owner and pirates in this case, where nodes D, and D, correspond, respectively, to the
Defender’s first and second decisions, node A represents the Attacker’s decision, and chance node S
represents the outcome of the attack. We include (cp, ca) which represent the generic consequences
that the Defender and the Attacker face, respectively, for the corresponding sequence of decisions
and attack results.

modelling the Defender’'s own Preferences and Beliefs In supporting the Defender, her
decision problem is seen as the decision tree in Figure 22, in which the Attacker’s decision node
has been replaced by chance node @ This reflects that the Attacker's decision is seen as
an uncertainty by the Defender, with the bulk of the modelling work consisting of the assessment
of her probabilities over the Attacker’s actions. Thus, to solve her decision problem, she needs to
assess pp(A|d;), her predictive probability of an attack given each d; € D;, besides the more stan-
dard assessments pp(S|dy,at) and up(cp), with cp representing her monetary cost equivalent of the
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d? (team) A S—0
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d} (alternative route)

Figure 21: Game tree for the Somali pirates case

multi-attribute consequences associated with each leaf. We now specify the standard assessments,
starting with her preferences.
The relevant consequences for the Defender in this problem are

« The loss of the ship,
» The costs associated with defending and responding to an eventual attack, and
» The number of deaths on her side.

As far as the costs associated with implementing her protective and response actions against an
eventual hijacking are concerned, we have that, for the defensive actions in D;, these costs are:

« 0 euros, if she chooses to do nothing, d?,

0.05M euros, if she chooses to use one armed person, di. This corresponds to the salary of
the armed person for 6 months, plus equipment.

0.15M euros, if she chooses an armed team, df. This cost corresponds to the salary of two
armed persons, with better equipment, for 6 months.

0.5M euros, if she chooses df, going around the Cape of Good Hope. This cost is consequence
of the longer distance of the trip. Bad weather conditions might also increase the cost of this
longer trip, but we shall neglect this uncertainty here.

The costs associated with the defence actions in D, are:

+ 0 euros, for option d2, doing nothing.
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Figure 22: Decision tree representing the Defender’s decision problem for the Somali pirates case

* 2.3M euros, for option d3, paying the ransom. We have estimated it through the average of
the latest ransoms paid, which were, see Carney et al. (2009), 2.2M for Le Ponant; 2M for Mt
Stolt Melati 5; 1.1M for Mt Stolt Valor; 3M for Sirius Star; and 3.2M for Mv Faina. Given the
uncertainty in the ransom negotiations involved, we could model this as a random variable, but,
for simplicity, we shall not do this here.

« 0.2M euros, for option d2, calling for the Navy. This estimation is based on a military intervention
using the international coalition ships already deployed in the area, including one Spanish ship.

As far as human lives are concerned, we consider that if the ship is attacked and the attack is
aborted (S = 0), there are no lives lost. If the attack is successful (S = 1), we assume that the armed
Defenders have died and that, depending on the chosen response at D,, there might be additional
lives lost, specifically:

« If the response to the kidnapping is doing nothing, dg, the pirates might kill part of the crew as
a warning for future hijacks. We estimate this to be four crew members, though again some
uncertainty exists, which we do not treat here.

« If the ship owner decides to pay the ransom, d3, there will be no additional human loss.

« If the hijacked ship is rescued by the Navy, d3, we estimate that there might be two casualties
due to both collateral damage during the intervention and/or because the pirates feel threatened
and kill some of the crew during the operation. Again, there would be uncertainty involved, not
treated here.
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We monetize the value of the ship and crew lives. The type of ships operating in that area,
focusing on tuna fishing, have a length between 80 and 110 m and lots of technology built in. A
new ship of this class costs between 9M and 12M euros. Assuming some depreciation because
of time, we shall consider that the incumbent ship is valued in 7M euro. As far as quantifying the
value of a human life, we shall use the concept of statistical value of a life, see Martinez Pérez and
Méndez Martinez (2009), which, according to Riera Font et al. (2007), was estimated as 2.04M euros
for a Spanish person.

Table 9 summarises the estimated consequences and aggregated monetary costs cp for the
Defender associated with each scenario consisting of a path in the tree shown in Figure 21. Clearly,
if there is no attack (a = a°), we have that S = 0.

Table 9: Consequences of various tree paths for the Defender

D1 S D, Ship loss Action costs Lives lost Cp
d? (nothing) S =1 dJ (nothing) 1 0+0 0+4 |15.16
d? (nothing) S=1 d (pay) 0 0+ 2.3M 0+0 2.3
d? (nothing) S=1 dZ (Navy) 0 0+ 0.2M 0+2 4.28
d? (nothing) S =0 0 0 0 0
d{ (man) S=1 dJ (nothing) 1 0.05M + 0 1+4 |17.25
di (man) S=1 di(pay) 0 0.05M + 2.3M 1+0 4.39
di (man) S=1 d2(Navy) 0 0.05M + 0.2M 1+2 6.37
di (man) S=0 0 0.05M 0 0.05
d? (team) S=1 dJ (nothing) 1 0.15M + 0 2+4 |19.39
d? (team) S=1 dj(pay) 0 0.15M+23M 2+0 6.53
d? (team) S=1 d2(Navy) 0 0.15M+0.2M  2+2 8.51
d? (team) S=0 0 0.15M 0 0.15
d3 (alternative route) 0 0.5M 0 0.5

We shall assume that the Defender is constant risk averse with respect to monetary costs. Thus, her
utility function is (strategically equivalent to) up(cp) = — exp(c x cp), with ¢ > 0. We shall study what
happens when ¢ € {0.1,0.4,1,2,5} as a way to perform sensitivity analysis.

Based on information from Carney et al. (2009), we shall assume that the Defender’s beliefs about
an attack being successful conditional on no initial defensive action taken would be pp(S = 1|al, df) =
0.40. We shall also assume that

* pp(S = 1|al, dll) = 0.10, for the case in which she uses private protection with an armed person,
and

* pp(S = l|a1,d12) = 0.05, for the case in which she uses private protection with two armed
persons,

and we shall check sensitivity with respect to such assessments making them smaller (0.05 and
0.025, respectively) and higher (0.2 and 0.1, respectively)

modelling the Defender’s Beliefs over the Attacker’'s Actions We describe now how the
Defender may estimate the probability of being attacked, given her implemented initial defence. Car-
ney et al. (2009) suggest that the probability of being attacked is 0.005 based on historical data on
piracy in the coast of Somalia. However, this estimate does not take into account that some ships
may be more desirable, in terms of obtaining a bigger ransom, than others for the pirates who typically

92



use observers and informers to decide upon their targets. Our objective is to estimate a predictive
probability of attack pp(A = a'|d,) for the type of ship owned by the Defender, conditional on each
possible initial protective defence d; € D; \ {d{} taken. Instead of estimating these probabilities
based on data, as in Carney et al. (2009), which corresponds to a 0-level analysis, we do that based
on a 1-level analysis, see Banks et al. (2011) and the discussion by Kadane (2011).

To do so, we assume the Attacker behaves as an expected utility maximiser and derive the De-
fender’s uncertainty about the Attacker’s decision from her uncertainty about the Attacker’s probabil-
ities and utilities. Thus, the Defender must analyse the decision problem faced by the Attacker from
her perspective, as shown in Figure 23. Note that the set of alternatives for the Attacker has been
expanded to include alternatives a' € A, for i = 2,...,n, representing the pirates option to attack
other ships that are not owned by our Defender. We have also added new chance nodes D, at the
end of the tree paths starting at a', representing the response of shipsi = 2,...,n to an eventual
kidnapping, which are considered uncertainties from the perspective of the Attacker. This analysis of
the pirates decision must lead to the probabilistic assessment of the perceived pirates’ preferences
(the uncertainty of the Defender over the Attacker’s preferences, modelled through a random variable
Ua(a, s, d,), where now a € A = {a° al,...,a"}) and beliefs (the uncertainty of the Defender over the
Attacker’s beliefs, modelled through the random variables PA(S = 1|al,d;) and Pa(D,|d;,at, S = 1)
as well as PA(S = 1|a') and Po(D2|a', S = 1) for i = 2,...,n). For simplicity, we shall assume that the
n ships are of similar value and features, but see our comments below.

CA
d? (nothing)
0.97
1
S=1 d, (pay)
D, 5 2.27
al (attack) dy (army)
— : —1.28
S=0
,,,,, ® —0.53
O dy a® (no attack)
N \
AN \ d? (nothing)

————— \ 0.97
. s—1 o~ A
. ) D> 5 o 227
\ 3l /N d5 (army)
—1.28

(attack others) S—=0
® —0.53

Figure 23: Decision tree representing the perceived decision problem of the Somali pirates

The Defender considers that the relevant consequences for the Attacker are:
» Whether they keep the ship or not.
e The amount of money earned.

* The number of pirates’ lives lost.

As described in Carney et al. (2009), the estimated average cost of an attack operation is around
30,000 euros (0.03M euros). The eventual benefits if the Defender pays the ransom are the above
mentioned 2.3M euros. As human lives are concerned, we shall assume that two pirates are dead if
the attack is repelled and, if successful, no pirates’ lives are lost in the attack. However, if the Defender
responds by sending the Navy, we shall assume that five pirates will be killed. Again, these numbers
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(ransom, lives lost and, to a lesser extent, operational costs) would be affected by uncertainty, but we
shall neglect it

If the pirates keep the ship, it will not have the same monetary value as for the Defender. They
may use its machinery or its technological instruments, or they could use it as a mothership. We
shall assess its economic value for the pirates as 1M euros. We shall assume that they put a value
equivalent of 0.25M euros to a pirate’s life. Table 10 summarises the consequences for the Pirates of
various attack scenarios, including the aggregate monetary equivalent c, in the last column.

Table 10: Consequences for pirates of various tree paths of their decision problem, i =1,...,n.

A S D, Ship kept Profit Lives lost Ca
a® (no attack) 0 0 0 0
a (attack) S=1 d? (nothing) 1 —0.03M 0 0.97M
a (attack) S=1 d2 (pay rescue) 0 2.27M 0 2.27M
a (attack) S=1 d2(Navy sent) 0 —0.03M 5 —1.28M
a (attack) S=0 0 —0.03M 2 —0.53M

As stated above, we have assumed that, for the pirates, there are no differences between the conse-
quences of attacking our Defender’s ship (al) and those from attacking other ships (@,i = 2, ..., n),
essentially implying that the n ships are of a similar type.

At a qualitative level, the Defender thinks that the pirates are risk seeking over profits. Specifically,
she assumes they are constant risk seeking. Therefore, she uses a utility function (strategically
equivalent to) ua(ca) = exp(c - ca), with ¢ > 0, to model the pirates’ preferences and risk attitudes.
However, she is not sure about which ¢ determines the pirates’s utility function, but she thinks that
¢ ~ U(0, 20). This uncertainty over ¢ induces uncertainty over ua to provide U,.

As the pirates most likely have access to the same information as the Defender, she assesses the
following probabilities for the pirates’ beliefs over an attack on her ship being successful, conditional
on her initial defence move:

* Pa(S = 1]at,d?) ~ Be(40, 60), for no defensive action taken,
» PA(S =1at, dll) ~ Be(10, 90), for private protection with an armed person, and
 Pa(S = 1]at,d?) ~ Be(50, 950), for private protection with a team of two armed persons.

Note that the expected values of these distributions correspond with the assessed probabilistic beliefs
of the Defender on the same uncertainty. Likewise, the Defender assesses that the probabilities
representing the pirates’ beliefs of a successful attack on shipsi = 2, ..., n, which we assumed are of
the same class than the Defender’s ship, are:

* PA(S =1/a') ~ 1 Be(40,60) + 1 Be(10,90) + 1 Be(50,950), i = 2, ..., n, acknowledging our lack
of information about the defence actions undertaken by other ships and, therefore, about their
vulnerability levels. Note that we assume these defensive actions are observed by the pirates,
but not by the Defender.

Now, the Defender assesses how the pirates think she will respond to a successful attack. Specif-
ically, she thinks that the pirates expect her to respond along the same lines of the defence chosen
by her at the first stage. Thus, a tough deterring defence at her first move is expected to produce
an eventual response of similar harshness. Therefore, the Defender assesses the following Dirichlet
distributions over dg (doing nothing), di (pay), and d2 (Navy) € D,, representing her beliefs on the
Attacker’s probabilities pa:
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« Pa(D2|d?,A =al,S =1) ~ Dir(1,1,1): If d; =d? (doing nothing) and the ship is hijacked, any
response in this case is perceived equally likely by the Attacker.

 Pa(D2|d},A =al,S = 1) ~ Dir(0.1,4,6): If d; = d} (protect with an armed man) and the ship
is hijacked, it is perceived that the Attacker expects the Defender to respond doing something,
with sending the Navy more likely than paying the ransom.

» Pa(D2|d?,A=al,S =1) ~ Dir(0.1,1,10): If d; = d? (protect with an armed team) and the ship
is hijacked, it is perceived that it would be even more likely for the Attacker to believe that the
Defender will respond sending the Navy.

Finally, the Defender assesses that

« Pa(D2|A = @',S = 1) ~ % Dir(1,1,1) +  Dir(0.1,4,6) + 3 Dir(0.1,1,10), for i = 2,...,n,
suggesting our lack of information about the other ships’ defensive type and correspondingly
their responses. Note that we are acknowledging the Defender’s uncertainty about the type of
defensive actions taken by these other ships and observed by the pirates.

Based on her above assessments, the Defender may solve the perceived pirates’ decision prob-
lem using backward induction over the decision tree in Figure 23, propagating the uncertainty of her
assessed random preferences and beliefs (Ua, Pp) of the Attacker as follows:

« Compute the random expected utilities associated with the pirates choosing a' conditional on
each of her initial protective defences d; € D; \ {d3}

Wa(dy,at) = Pa(S = 1|d1,al)[ Y Ua(@", 8 =1,dp) Pa(Dz = d2[dy,@%, S = 1)]
dgEDg
+ PA(S =0[d3,a") Ua(@", S = 0).

« Compute the random expected utilities associated with the pirates choosing a' fori =2, ...,n

Wa(@) = Pa(S = 1\a‘)[ D Ua(@,S=1,d3) Pa(Dz = dofa’, S = 1)]
do €Dy

+ PA(S = 0[a') Ua(a', S = 0).

« Compute the Defender’s predictive probabilities of being attacked (A = al) conditional on each
of her initial defences d; € D \ {d3}

pp(A = al|d;) = Pr(Wa(dy,at) > max{Ua(@®), Wa(@), ..., Wa@M}).

These probabilities can be approximated by Monte Carlo simulation by drawing a sample {(uf\, p',f\)}E:1
(Ua, Pa) from the pirates’ random utilities and probabilities assessed by the Defender and solving for
each draw the pirates’ decision problem as before. This generates a sample of when a;(d;) = alis
the optimal decision for the pirates, and then we approximate pp (A = al|d;) by

#{1 <k <N :¢K(dg,al) > max{uk(@?), ¥k(@?),...,vk@"}}
N .

For illustrative purposes, let us assume that n = 9: there will be eight other ships (of similar class)
exposed to the risk of being seized by the pirates at the time period in which the Defender’s ship sails
through the Gulf of Aden. Based on 50,000 Monte Carlo iterations, we get the following estimates for
the probability of the Defender’s ship being attacked, given that she chooses as initial defence action
di € D1\ {d?}
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* pp(A= alydf) = 0.30332, when the Defender does not take any protective action initially,

* Pp(A = al|d]) = 0.02560, when she uses private protection with an armed person, and

* Pp(A = a1|d12) = 0.00004, when she uses private protection with a team of two armed persons.

Note that the probability of attacking the Defender’s ship gets smaller if it is protected with an armed
guard and even smaller with an armed team. Also these conditional attack probabilities would de-
crease as n gets bigger, as can be seen in Table 11. We could also analyse the impact of different
vulnerabilities among ships if we elicit different PA(S = 1|a') for each type of ship, i = 2, ..., n. But we
have assumed that they are all the same in this case.

Table 11: Sensitivity analysis

po(S = 1jat, dy) Po(A = at|d)
dr aZ n __ dv dr GE; c d; d(d;)
0.2 0.1 5 0.41010 0.18354 0.00382 0.1-1 df (team) d3 (pay)
2-5 d? (GH route)
9 027260 005780 0.00008 01  dZ (man) dI (pay)
04-1 d? (team) di (pay)
2-5 d3(GH route)
15 018322 0.01622 0.00000 0.1-04 dI(man) dI (pay)
1-5 d?(team) d2 (pay)
20 0.14230 0.00628 0.00000 01-1 dZ (man) dI (pay)
2-5 d2(team) d2 (pay)
010 005 5 046564 012166 0.00328 0.1  di (man) dI (pay)
04-1 df (team) d3 (pay)
2-5 d? (GH route)
9 030332 0.02560 0.00004 0.1-04 dZ (man) dI (pay)
1-2  d?(team) di (pay)
5 d? (GH route)
15 0.19386 0.00392 0.00000 0.1-1 dll (man) d2l (pay)
2-5  d#(team) d3 (pay)
20 0.14836 0.00098 0.00000 0.1-1 dl1 (man) d% (pay)
2-5  d2(team) di (pay)
005 0025 5 049010 009372 0.00374 0.1  di (man) dI (pay)
04-1 d? (team) d3 (pay)
2-5  d? (GH route)
9 031764 001596 0.00002 0.1-04 dI(man) dI (pay)
1-2  d?(team) di (pay)
5 d3 (GH route)
15 0.19842 0.00142 0.00000 0.1-1 dj (man) d> (pay)
2-5  d#(team) d3 (pay)
20 0.14778 0.00024 0.00000 0.1-1 di (man) d> (pay)
2-5  d2(team) di (pay)
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Finding the Optimal Defence Strategy We now have all the inputs needed to solve the deci-
sion problem for the Defender. Given these, the Defender can solve her decision problem working
backwards the tree in Figure 22. At decision node D,, she can compute her maximum utility action
conditional on each d; € D; \ {d3}

d;(dy,a', S = 1) = argmaxy, ., Up(Cp(ds, S = 1,dy)).

Afterwards, she will obtain at chance node S her expected utilities

¥p(d1, @) = pp(S = 1|d1, a') up(cp(ds, S = 1,d3(ds, at, S = 1))
+ pp(S =0|dy,a) up(cp(ds, S = 0)).

At this point, she will use her probabilistic assessments of being attacked conditional on her initial
defence moves, pp(A = al|d;), to compute for each d; € D; \ {d3} her expected utility at chance
node A

¥p(dy) = ¥p(di, at) pp(A = alt|d;) + up(cp(dy, S = 0)) (1 — Pp(A = a'|dy)).

Finally, she can find her maximum expected utility decision at decision node D,
d; = arg maxdileple(dil),

where ¢D(df) = uD(cD(df)) is obtained from Table 9. The Defender’s best strategy is then to first
choose d; at node Dy, and, if the ship is attacked and hijacked, respond by choosing d;(d;,al, S = 1)
at node D».

For each of the considered risk aversion coefficients determining her utility function, we obtain,
based on the above estimates of pp(A = al|d;) for n = 9, that the defence strategies of maximum
expected utility are:

« ¢ = 0.1 and ¢ = 0.4: protect with an armed man (d; = d}), and if hijacked (S = 1), pay the
ransom (d; = d3).

* ¢ =1and c = 2: protect with a team of two armed men (d; = dlz), and if hijacked (S = 1), pay
the ransom (d; = dJ).

» ¢ =5: avoid the Somali coast by going through the Cape of Good Hope (d; = df).

We see that choosing to go through the GH Cape emerge as optimal decision when the risk
aversion coefficient of the Defender is ¢ = 5, that is when the Defender becomes most risk averse.
This suggests that some security measures are required, but if the Defender is too risk averse it is
better for her to change the route. The optimal Defender’s response action to a hijacking is always
paying the ransom. This is possibly because it is the option that allows the Defender to keep the ship
and minimise the lives lost. Clearly, this neglects the political implications of this action, but recall that
we are dealing with this problem from the ship owner perspective. One possibility to acknowledge
such fact would be to add some extra cost if the ransom is actually paid, reflecting the negative
political implication associated with it.

Finally, we show in Table 11 the maximum expected utility defence and estimated attack probabil-
ities for several values of n and pp(S = 1/al,d;), for d; = d},d?, allowing us to check the sensitivity
of the solution with respect to these quantities.
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Sequential Defend-Attack with Private Information: protection of critical
infrastructures

Consider again the situation for the National Grid case study in WP2. We assume again that the
Government (She, the Defender) needs to protect two installations within the National Grid network
against a potential terrorist attack. The Defender has a limited amount of defensive resources dis-
tributed between both sites. The Attacker knows the total amount of defensive resources. This is
common knowledge as it was publicised by the Defender. However, the actual distribution of defen-
sive resources between both sites (v, for Site 1, v, for Site 2 for each unit of defensive resources,
vy + Vv, = 1) is only known by the Defender.

The Attacker has the capacity of launching an attack against just one of the two sites, and he
has announced that he will attack one of the sites with all his available resources. Therefore, the
available actions for the Attacker are a € A = {a;,a,} with @ representing attacking Site i, i = 1, 2.
The Defender has the option of re-distributing her allocation of defensive resources by moving d of
them from one site to another. This move will be observed by the Attacker before deciding which site
to attack. The set of alternatives for the Defender is then D(v1) = {d : v; — 1 < d < v;}, where, for
example, d = 0.5 means that she will move half of her total defensive resources from Site 1 to Site 2,
and d = —0.5 that half of her defensive resources will be moved from Site 2 to Site 1. If v; € [0,1] is
the initial distribution of defensive resources between sites, the distribution after her move d will be:
v, —d for Site 1 and v, + d for Site 2.

The probability that an attacked site is destroyed (successful attack) depends on the amount of
resources committed to that site by the Defender. The more defensive resources allocated to the site,
the lower the probability that the attack will be successful. Specifically, they both share the (commonly
known) beliefs that

pS1=1d,av = V179 Taza 23)
0, ifa=ap,
0, ifa=ay,
S;=1|d,a,v) = 24
p(S2 =1 V) {1_(V2+d)’ ifa=ay. (24)

Note that as deploying more defensive resources at a site reduces the probability that an attack on
that site will be successful, v = (v1,V,) can be interpreted as a measure of the sites’ vulnerability
before the Defender's move: the lower the amount of initial defensive resources allocated to a site,
the higher the success probability of an attack on the site, and the higher the need for the Defender
to move resources to that site in order to reduce that risk. The Defender keeps the information about
the sites’ vulnerability v as a secret, and, thus, the Attacker does not know v. However, the Defender
thinks the Attacker is capable of learning about her private information v by observing her move d
using Bayes’ rule as in (20).

The Attacker’s and Defender’s objectives are commonly known to be maximising the probability of
succeeding in his attack (for the Attacker), and minimising this probability (for the Defender). Thus, the
utilities for the Defender and the Attacker associated with each outcome are known to be, respectively,

1, ifandonlyifS;=0and S, =0,

Up(s1,S2) = . Y= 2 (25)
0, otherwise,
1, ifandonlyifS;=1o0orS,=1

Ua(S1,82) = ¢ ! YL 2T (26)
0, otherwise.
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Figure 24 shows coupled influence diagrams representing this decision situation. Node S; represents
the uncertainty associated with the success of an attack carried out against Site i, withi = 1,2. These
uncertainties depend on the actions taken by both the Attacker and the Defender, as well as on the
initial distribution v of defensive resources secretly allocated by the Defender between both sites.

Figure 24: A Sequential Defend-Attack resource allocation problem between two installations on the
National Grid network with Defender’s private information about the sites’ vulnerabilities

To simplify, we have assumed that the Defender’s and the Attacker’'s preferences for the different
outcomes are commonly known to be described respectively by (25) and (26), and that both the
Defender and the Attacker share the same commonly known beliefs about S;|d,a,v and S;|d, a, v,
described by (23) and (24) respectively. If v were also common knowledge, then the optimal decision
for the Defender would be d = (v — v»)/2, thus leaving the same amount of defensive resources in
each of both sites after her re-distributing move, with the Attacker indifferent between striking any of
the sites.

When v is privately known by the Defender only, the game-theoretic approach based on Bayes-
Nash equilibrium assumes that the Attacker’s beliefs over v are common knowledge. We deem
unrealistic this assumption that the Attacker will reveal his beliefs about v, and solve the problem for
the Defender weakening it. Figure 25 shows the influence diagram and the decision tree representing
the Defender’s decision problem, in which the Attacker’s decision is perceived by her as an uncertainty
and the value of v is observed by her before making her decision.

UD

(a)Influence diagram (b)Decision tree
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The analysis of her uncertainty about the Attacker’s decision requires that she thinks about the deci-
sion problem faced by the Attacker, which is shown in Figure 26, where now her decision is modelled
as an uncertainty from the Attacker’s perspective, and the value of v is unknown to him at the time
he makes his decision.

up

(a)Influence diagram (b)Decision tree

Assume that we are able to obtain from the Defender the following assessments:

v =(vy =05v, =1-v; =0.5): The initial allocation of defensive resources between both
sites.

« V = (V1,V, = 1 — V,): The Attacker's assessment of the Defender’s private information, as
elicited by the Defender. The Defender knows v, but the Attacker does not. The Attacker’s
(prior) beliefs over the possible values of V1 = v, € [0, 1] will be represented by pa(V1) and will
be elicited from the Defender’s perspective through P5(V1). Based on the information available
to her, she believes that pa(V1) is a beta distribution Be(«, 5) with mean u = /(e + 3) and
precision v = «+ g within the ranges p € [0.5,0.8] and v € [10, 30], respectively. Based on this,
we model PA(V1) as a hierarchical beta distribution Be(r v, (1 — u) v) with ¢ ~ 24(0.5,0.8) and
v ~ U(10,30).

* A heuristic for assessing pp(Al|d), the Defender’s beliefs about which site the Attacker will
attack after observing her move, within the model used by the Defender to represent how the
Attacker thinks she will solve her decision problem. To solve the Defender’'s problem from
the Attacker’s perspective, he would need to assess pp(A'|d). The heuristic model for the
Attacker’s choice at this level of analysis assumes that the Attacker will choose the site with
less defensive resources and that he will not revise his estimate v of v after observing her
move d. Specifically,

Al=ay, if v, —d < 0.5,
Al=a,, if v; —d > 0.5,

where Vv, represents the Attacker’s estimate of vy, the initial defensive resources in Site 1. Thus,
the Defender ends the hierarchy of recursive decision analysis at this point, disregarding the
modelling of further and more complex levels of analysis.
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eV = (V1,V, = 1 —V;): The Defender's beliefs of the Attacker's estimate ¥ of her private
information v, as would be assessed by the Attacker. The heuristic above has reduced the
assessment of pp(Al|d) to the assessment of V. We use a triangular distribution on [0, 1] with
mode ¢ to model the Defender’s beliefs about v,. Thus, \71|¢> ~ Tri(min = 0, mode = ¢, max =
1). The Defender also thinks that the Attacker believes that she overestimates what he thinks
to be v;. Specifically, ¢|6, 0 ~ N'(V1+86, o) truncated on [0, 1], with the Defender assessing that
6 ~14(0.1,0.2) and o ~ (0.1, 0.3).

We find a solution to the Defender’s decision problem as follows.
Pp(A! = a;|d)

1. Compute the Defender’s beliefs over Al based on the proposed heuristic:
po(A' = a;|d) = Pr(V; — d < 0.5/¢),

where V;|¢ ~ Tri(0, mode = ¢, 1). Thus, given ¢,

0, 05+d <0
0.5+d)?/¢, 0<05+d<

pp(Al = a;|d) = ( y'/e ) - =¢
1-(05-d?/(1—¢), ¢<05+d<1
1, 1<0.5+d.

2. Given pp(Al|d), the Defender can solve her decision problem by working backwards the tree in
Figure 25 as follows:

» At chance nodes S; and S,, compute for each (v, d, a),

bov.d.@)= > D [up(s1,52)P(S1= 51,52 =5/, a,V)

s;€{0,1} s,€{0,1}
p(S1 =0]d,a,v) p(S2 =0|d, a,V)

_{Vl—d, a=a;

vo+d, a=ay.

At chance node A?, compute for each (v, d),

Yp(v,d) = ¢p(v,d,ar) pp(A' = a1|d) +¢p(v,d,az) [1 — pp(At = az/d)].

Thus, Yp(v,d) is
v +d,

ifd <—0.5,
(v —d) (0.5+d)?/¢ + (vo +d) [1 — (0.5+d)?/¢],

if —0.5<d < —-0.5+¢,
(vi —d) [L = (0.5-d)?/(1 - ¢)] +(v2+d) (0.5 —d)?/(1 - ¢),

if —0.5+¢ <d <0.5,
Vl—d,

if 0.5 <d.
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» At decision node D, solve for each v,
d*(v) =argmaxgepy, —1v,) ¥o(v,d)
Thus, for each v; € [0, 1], the optimal decision for the Defender, d*(v1), is

2vy + (/4VZ + 69
_L, : 27)

2 6 ’

if vi < (6¢ —1)/4, and

1, 2vi—1)— VAvi— 12 +6(L— )

5 5 (28)
if v > (60 — 1) /4.

From the perspective of the Attacker, pp(A!|d) is not known since he does not have access to
the value of ¢ used by the Defender in (27). Should the Attacker know ¢, he would be able to
anticipate the Defender’s optimal move, d*(v), for each possible initial allocation v. At this level
of the recursive analysis, the Attacker’ beliefs about ¢ are propagated to define pa(D|v;) from
d*(vy) in (27)—(28), when ¢|v1, 6,0 ~ N (v1 + 6, o) truncated on [0, 1].

. Given pa(D|v) and pa(V), the Attacker can learn about V from his observation of D = d by
computing pa(V |d) using (20), and solve his decision problem by working backwards the tree
in Figure 26 as follows:

» At chance nodes S; and S,, compute for each (d, a, v),

dadav)= 3 > |ua(ss2p(S1= 51,82 = 520d, a,v)
s;€{0,1} s,€{0,1}

=1-p(S;1=0[d,a,v)p(S2 =0[d,a,v)

— p(S]_:l’dial!V), a=a;
p(Sz =1/d,ap,Vv), a=a.

» At chance node V, compute for each (d, a),
Ua(d @)= [ Ua(d,a,v) paV = vid) v
At decision node A, solve for each d,
a’(d) = arg max,c(a, a,1¥a(d, @),
obtaining that, for each d € [-1, 1],

a*(d)=a1, v¥a(d,a1) > ¥a(d,ar)
a*(d) =ay, v¥a(d,a1) <ya(d,ar)
where
Yald,a1) > Ya(d, az) &
[ —2vy+2d) pa(Ve = va|d) dvy > 0 &
Ep, (V1) — d < 1/2. (29)
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Thus, the optimal decision for the Attacker is

a*(d) = ay, if Ep,(V1ld)—d <1/2,
a*(d) = ap, if Ep,(V1ld)—d > 1/2.

The Attacker then chooses a; (attack Site 1) when, after observing d, he expects less defensive
resources in Site 1 than in Site 2, where the Attacker’s expectation is computed with respect to
his updated beliefs about V: pa(V|d). Should the Defender know pa(V |d), she would be able
to anticipate the Attacker’s choice by computing (29). However, she does not know it as she is
uncertain about the Attacker’s probabilities pa(D|v) and pa(V), which are necessary to compute
his pa(V|d). But we can assess her beliefs Pa(V) = pa(V |u, v), u ~ U(0.5,0.8), v ~ 1(10, 30),
and Pa(D|v) = pa(D|v,0,0), 6 ~1(0.1,0.2), 0 ~ U(0.1,0.3), to obtain P5(V |d) as in (22), and,
in turn, compute her predictive probability of the Attacker’s decision

Po(A =az|d) =P, 9,[Ep,(V1]d) —d < 1/2].

4. We use Monte Carlo simulation to estimate pp(A = a; |d)

Monte Carlo approximation of pp(A = a;|d)

For k=1 tony
Simulate pX(Vy) ~ Py(Vy)
X ~ (0.5, 0.8)
vk ~ (10, 30)
Set p*(V1) = Be(u* v*, (1 — u*) v¥)
Simulate pX(D|vy) ~ Py(D|vy)
0% ~ 1(0.1,0.2)
o¥ ~1(0.1,0.3)
Set ¢x|vy = N(vy +6%,0%) truncated on [0, 1]
Thus, pE(0[v1) = Py, (0 = d°(v1))
Simulate (vi,d?) from p¥(Vy,D) ~ P,(Vy,D)
For i=1ton;
Vi ~ p*(Vy) '
6 ~ ulVs = v |
d* =d*(vi), with ¢ = ¢; in (27)-(28)
Thus, d* ~ p*(D|V; = v})
or every —1<d<1
{vi=vi:(vh,di =)}, ~ phaa)
Approximate Ep(Vi|d) by > i, v§/ng
Approximate pp(A =ai|d) by #{1 <k <mny:Ex(Vi|d) —d < 1/2}/ng.

o

5. Once pp(A|d) has been approximated, the Defender can find her (Monte Carlo estimated) max-
imum expected utility decision d*(v) by solving the decision tree in Figure 25 using backwards
induction:

d* =argmaxyc_y, v,)(V1 — d) po(A = az|d) + (v2 +d) pp(A = az|d),

with v = (vy =0.5,v, = 0.5)
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We used n, = n; = 5,000 to run the Monte Carlo simulation and obtained that the Defender’s
optimal move is d* = 0.15. Thus, given the assessments from the Defender, her maximum expected
utility action is to re-allocate 15% of her defensive resources by moving them from Site 1 to Site 2,
decreasing her resources in Site 1 from 50% (v; = 0.5) to 35% (vi — d*) and increasing them in
Site 2 from 50% (v, = 0.5) to 65% (v, +d*). Figure 27 shows the Defender's (Monte Carlo estimated)
expected utilities ¢p(d) of her feasible moves —0.5 < d < 0.5 as well as her (Monte Carlo estimated)
predictive probabilities pp(A|d) of each site being attacked for each of her feasible d. For d* = 0.15,
we have that pp(A = a;|d*) = 0.06 and pp(A = a,|d*) = 0.94.

(@)yp(d), —0.5<d <0.5 (b)pp(Ald), —0.5<d < 0.5

We may see how the solution proposed by the ARA approach is consistent with the Defender’s
beliefs on the Attacker overestimating her resources initially allocated to Site 1. The move of some
defensive resources from Site 1 to Site 2 will reinforce the Attacker’'s perceived beliefs. Thus, the
Defender’s expected utility increases by moving resources to Site 2 until her predictive probability of
an attack to Site 1 starts increasing sharply, see Figure 27. This allows for the increase of the relative
strength of Site 2, the site that a priori is more likely to be attacked, until more resources sent to Site 2
start signalling that Site 1 will end up with less resources. Sending too much defensive resources to
Site 2 would allow the Attacker to change his beliefs about which site has less resources and make
the Defender vulnerable to an attack on Site 1.

Finally, we also note that the Defender’s expected utility function has another local (but not global)
maximum which corresponds to d = —0.15. This move would allow the Defender to increase the
relative strength of Site 1 while at the same time making the Attacker believe that she had less
resources in that site. Thus, moving some defensive resources from Site 2 to Site 1 would make
the Attacker revise down his (prior) beliefs on the initial amount of defensive resources in Site 1,
increasing the Defender’s predictive probability of an attack to Site 1 to a point in which for d = —0.15,
pp(A = a;|d = —0.15) = 0.59. At this point, the move of more resources to Site 1 would decrease her
perceived likelihood of an attack to Site 1, making, in turn, her expected utility to decrease again, see
Figure 27.
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ANNEX5. Sequential Defend-Attack-Defend for Spacial Set-
tings

We describe now the ARA approach for the model described in Section 4 which essentially
may be viewed as a set of ARA models, one for each cell, with models coordinated by re-
source constraints and value aggregation across each cell for both the defender and the
attacker, as specified below. We will illustrate this model with a simple example, related with
security issues regarding the installations of a major ground transport operator, see deliver-
able D3.2 - Urban public transport requirements. In this sense, we consider a metro operator
(She, the Defender), which deploys several preventive measures against vandalic acts on
the metro stations (cells). Under eventual attacks from the hooligans (He, the Attacker), the
operator may use additional resources to recover from the attacks.

Defender dynamics

We describe here the dynamics of the metro operator, illustrated with an influence diagram
in Figure 28, where the attack node A appears, now, as a chance node.

| |

Dy D, up

o

Figure 28: Influence diagram for metro operator dynamics

The operator will:

* Make an initial allocation dij1 of defensive resource at every station (i, j) of the metro.
« Face the levels of delinquency a; at each metro station (i, ), with impacts s,}

» Recover as much as she can, by possibly reallocating resources dij2 among stations.

» Face final attack outcome levels sg after the recovery phase.

Finally, they will aggregate the consequences of the delinquency in the metro assets and
obtain the corresponding utility.

In order to solve their decision problem, the operator needs to assess the following mag-
nitudes: pp(S1|d?, a), po(Sz|s1,d?), up(d?, sz, d?,v) and pp(Aldt). Assuming that they are
capable of providing such inputs, the operator would proceed as follows to obtain their op-
timal resource allocation, by applying standard decision analytic computations based on
dynamic programming, see e.g. French and Rios Insua (2000):

1. Aggregate the consequences at various stations and obtain the utility up(d?, s,, d?,v)
for every possible scenario (d!, s, d?,v).
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2. At chance node S,, they compute the expected utilities

Yo(d*,s1,d%,v) =) up(d?, s, d? v)Po(S2[s1, d).

S2

3. At decision node D,, they compute the maximum expected utilities, given the con-
straints on d?,
Yo(d*, s1,v) = max¢p(d*, s1,d? v),
d

and store the optimal recovery allocations d;(d?, s;).

4. At chance node S;, they compute the expected utilities

Yo(d*, a,v) = dp(dh, s1,V)po(se/d?, ).

5. At chance node A, they compute

Yp(dt,v) = Z Yp(d*, a,v)pp(ald?h).

6. Finally, at decision node D,, compute, given the constraints on d?,
Yp(V) = max Yp(dt,v),

and store the optimal resource allocation deployment d; (v).

We have made the whole evaluation depend on the value v, in case we want to explore
solutions for various values. Alternatively, we could fix it and, then, v would disappear from
the previous notation. We have assumed that both S; and S, are discrete, corresponding
to discrete levels of success. Note that we may describe the optimization problem for the
operator in one shot through the following expression

maxy > |max}  up(d*,sz,d% v)po(sa|si, d?)| po(s|ds, a)po(ald:).
a Sy Sy

This form would be easily amenable of being treated through the augmented probability
simulation approach in Bielza et al. (1999).

The most problematic assessment in the above approach is that of pp(A|d?), which de-
scribes the beliefs of the Defender about the attacks as a response of its deployed defences
d?! across the metro stations. We provide now an ARA approach to assess such distribution.
To do that, we solve the Attacker problem, assuming uncertainty over his assessments and
propagating such uncertainty to obtain the desired distribution.
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Attacker dynamics

We describe now the dynamics of the Attacker, illustrated in Figure 29 as an influence dia-

gram.
D, D,
Sl SQ
A uUA

Figure 29: Influence diagram for Attacker dynamics

The Attacker will:
* Observe the defensive resource dijl allocated at each metro station (i, j).

» Undertake attacks a;j, taking into account their constraints, which will produce impacts
s; across the network.

* Observe levels of attacks’ success sg after the operator tries to recover by reallocating
their defensive resources df.

Finally, it would aggregate the consequences at each station and obtain the corresponding
utility.

In order to solve his decision problem as an expected utility maximiser, the Attacker would
need to assess pa(S1|d?, a), pa(Sz|s1,d?), ua(a, s;,v) and pa(D2|d?, a,s;). Since we do not
have them available, suppose we model our uncertainty about them through probability distri-
butions (i.e., we get random probabilities and utilities) Pa(S1|d?, @), Pa(S2|s1, d?), Ua(a, s2, V)
and PA(D,|d%, a, s;). Then, we may propagate such uncertainty using the standard influence
diagram reduction algorithm, see Shachter (1986), and obtain the optimal (random) attack
A*(d4,V), as a response to each d;. This provides us with pp(A = a|d?) = P(A*(d?!,v) = a),
assuming the space of attacks is discrete, and, similarly, for the continuous case. The re-
duction algorithm would run like this, for each d*:

1. Aggregate the consequences at various stations and apply the random utility Ua(a, sz, V).

2. At chance node S,, compute the random expected utilities

Wa(a, s1,d?,v) = Z Ua(a, S2, V)Pa(S2|s1, d?).

S2
3. At chance node D,, compute the random expected utilities

Wa(d', a,51,v) = ) Wa(a, s1,d?, v)Pa(d?[d", &, sy).
d2
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4. At chance node S;, compute the random expected utilities

Wa(d' a,v) =) Wa(dh a,s1,V)Pa(s1[d", a).

S1

5. At decision node A, compute the (random) optimal attack as a response to each d?,
taking into account the constraints,

A*(d*,v) = argmax,Wa(d?, a, v).

Again, we have made the analysis depend on v, in case we are interested in undertaking
the analysis for several v values. Otherwise, we would eliminate it from the above notation.
Note that the above ID reduction may be written in one shot through

A*(d*,v) =argmax, » > ) " Ua(a, Sz, V)Pa(S2|s1, d*)Pa(d?(d", a,51)Pa(ss/d?, @).

S1 dZz2 s

This may be undertaken efficiently through the augmented probability simulation approach,
as mentioned above.

In order to estimate the required distribution, we may proceed by Monte Carlo sampling.
To do it, we may sample N times from

F = (Pa(S1]|d?, @), Pa(S2|s1, d?), Ua(@, s2, V), Pa(D2|d?, a, s1)),

and apply the previous procedure (1)—(5) to compute the optimal attack A; for d, at the k-th
step of the MC simulation. Then, we can approximate pp(A = a|d?) by

card{A;(d*,v) = a}/N.

We would proceed in a similar fashion in the continuous case.

Note that, of the four components in F, the first three may be comparatively easily ob-
tained from intelligence. However, the last one may require strategic thinking and some
kind of recursion as in Rios and Rios Insua (2012), which puts us within the k-level thinking
realm, see Stahl and Wilson (1995). Indeed, the approach presented here may be seen as
a 1-level thinking model.

The global approach

The previous approaches may be integrated in a two-phase procedure in which we first
forecast the attack distribution for each initial defence allocation, and we then find the optimal
of these defence allocations.
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Initialise parameters

1. For the attacker: For each dq, repeat fork =1,2,...,N

At node S, and for all feasible (a, s1,d?)
Generate uk(a, sz, V) ~ Ua(a, sz, V) for all (a, s2, V)
pK(S) = 1|s), d?) ~ Pa(S) = 1Js!,d?), for all (i, ) and (s, d2)
Compute 9f(a,s1,d%,v) = Y- uk(a, s2,v) [T; PK(S3 = sjls}, df

At node D, and for all feasible (d?, a, s1)
Generate pX(D|d?, a,s1) ~ Pa(D2|d?, @, s1)
Compute 9£(d?,a,51,V) = Yy k(@ s1,d?,v) p5(d?[dt, a,s1)

At node S; and for all feasible (d?, a)
Generate pk(S; = 1|d*,a) ~ PK(S; = 1/d%, a)
Compute y£(d*,a,v) =Yg vA(d*, a,s1,v) [T; PK(S] = s1ldi, a;)

At node A and for all feasible d?
Compute A (d?,v) = arg max,%(d?, a, v)

2. For each d?, approximate pp(A = a|d?) through #{1 <k < N : Ai(d%,v) =a}/N, for all a

3. For the Defender
At node S, for all feasible (d*,s;,d?)

Compute ¢p(d*, s1,d?,v) = 3= up(d*, s2,d? V) [T; Po(sils], 7

At node D5, for all feasible (d?, s1)
Compute d;(d?,s;) = arg max,.¢p(d?, s1,d?,v)

At node S, for all feasible (d*, a) )
Compute ¢p(d*, a,v) = > ¥p(d?, s1,d;(d*, s1),v) [T; Po(s]ldi, ;)]

At node A, for all feasible d?
Compute ¢p(d*,v) =3, vp(d? a,v)pp(ald?)

At node D,
Compute d; = argmaxg:¢p(d?, v)

Example: security deployment strategy against vandalic acts on a metro

We illustrate this model with a simple example which will serve us to show some of its computational
subtleties. This example is also related with WP3, and the security issues regarding the installations
of a major ground transport operator, see deliverable D3.2 - Urban public transport requirements.

We consider a small subnetwork within the whole network, composed of three stations as shown
in Table 12. The relative value of the assets associated with each station of the subnetwork, evaluated
on a scale 0-2, are: v; =1, v, =0.75, and v3 = 2.

Table 12: Metro subnetwork topology and station’s values

10752

Suppose that the defensive resources available to the metro operator (the Defender, She) are
measured in indivisible units. Specifically, suppose that the metro operator has Ré = 4 defensive
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units to be distributed before the Attacker has the opportunity to attack. A feasible first-stage resource
allocation is described through d* = (d},d},d}), where >7,d! < 4, d! > 0, and d} integer for
i =1,2,3. One possible resource allocation would be di =1,d} = 3,d3 = 0.

Suppose that attackers undertake attacks a; on metro stations i = 1, 2, 3 of the type described on
deliverable D3.2 - Urban public transport requirements. Assume their attack resources are limited to
Ra = 2 and, again, assume they can only be distributed in indivisible resource units. Thus, a feasible
attack a = (a1, ap, az) must satisfy that ), a; < 2, a; > 0, and & integer. One possible assignment of
attack resources would be a; =1,a, =0,a3 =0.

The operator can use its resources Rg to recover from the attacks. In this example, we assume
that second stage defensive resources will depend on the initial allocation, in that resources can only
be moved to neighboring stations, say because only rapid response is reasonable. Therefore, given
an initial assignment of resources d* = (d{, d3, d2), a feasible allocation d? = (dZ,d2, d3) must satisfy
the constraints:

3
Zdiz <4
i=1
d? < d}i+d?
d? <di+d}+d}
di <dj+dj3
d?>0,i=1,2,3
d? integer.

Assessments for the metro operator

Assessment of pp(Si|d*t, a). Sy =(S},S2,S3) represents the initial success/faliure of each pos-
sible attack to each station of the subnetwork. To assess the probability that S‘1 = 1 at each station
i = 1,2,3, we essentially compare the resources/efforts of both agents allocated to such station.
Table 13 shows pD(Si1 = 1|di1, aj), assuming the same success probability at every station i. For ex-
ample, the position associated to (d! = 3, a; = 2) means that two attackers against three security units
will lead to a success (in terms of attack) probability of 0.1 (and, therefore, attack failure probability
0.9). We assume independence over various stations.

Table 13: Initial attack success probabilities pD(Si1 = 1\di1, a;), for stationsi=1,2,3

g
0 1 2
0|0 085 0.95
1/0 06 0.75
dt 2|0 03 05
3|0 005 0.1
410 O 0.05

Assessment of pp(S;[si, d?). We also need to assess pp(Sh|s}, d?,) at every station i = 1,2, 3.
Clearly, pp(S, = 0|s} = 0,d?) = 1. For the rest of assessments, we illustrate pp(S), = 1|s} = 1,d?)
in Table 14. We assume the same probabilities at each station i and that these are independent of
whatever the amount of damage caused by a successful attack at the first-stage.

92



Table 14: Final attack success probabilities pD(Si2 = 1\sil, diz) after recovery at any station i

d2
0 1 2 3 14
g 0][0 0 0 0 0
1 1|1 095 08 06 04

Assessment of up(d*,s,,d? v). For the evaluation of up, we assume that the costs of security
are already budgeted (the metro operator has already paid them) and, therefore, up(d?!,s,,d?,v) =
up(s2, V). The objective of the metro operator is to minimise the aggregated impact of attacks across
the subnetwork stations. The impact of a successful attack (after the operator tries to recover) on
a station i is given by a factor p; of the initial value v;. For simplicity, we assume the same factor
across stations: pj = p = 0.1, fori = 1,2, 3, i.e. the Attacker takes 10% of the value of a station, if
successful after the recovery phase. Thus, the value of the i-th station at the end of the game is given
byvi x (1 — pSiz). Assuming that the total value of the subnetwork assets is additive, we have that

3
> vi(l—psh).
i=1

Assume that the operator is (constant) risk averse over the installations value. Since the operator will
want to maximise the final aggregated value of the installations, its utility function is

Up (S, V) = — exp [—c > ovit- pSiz)] ,¢c > 0. (30)
i
Since maximising up(S2, v) is equivalent to maximising
~en(e s ). (31)
i

which is a decreasing function on the company loss ), VipSiZ, the operator equivalently would min-
imise the company loss. Note that (31) represents a (constant) risk averse utility function on the
company losses, with the same risk aversion constant ¢ than in (30).

Metro operator assessments about the Attacker decisions

In order to estimate pp(A|d?!), we must put ourselves in the Attacker’s shoes and make the following
(uncertain) assessments of the Attacker’s beliefs and values from our perspective.

Assessment of Po(S;|d*, a). We assume that PA(S] = 1|d}, &) is similar to pp(S} = 1|d1,a;) for
stations i = 1,2, 3. To represent our uncertainty about the probabilities used by the Attacker to solve
his decision problem, we add some uncertainty by making PA(Sil = 1|di1,ai) ~ pe(a, B), so that its
mean is pD(S‘1 = 1\di1,ai) and its standard deviation is 0.05. For example, if pD(S‘1 = 1\di1,ai) =0.8,
we easily get 5 = 1.08 and o = 4.32. We will do this except for the cases in which pD(Si1 = 1|di1, a)) is
0 or 1, for which we assume the Attacker will share these beliefs with the Defender.

Assessment of Pa(Sz|s, d?). As before, for those cases in which pD(SiZ = 1|s‘1_, d?)is 0 or 1, we
have that Pa(S} = 1Js},d?) = pp(S}, = 1|s},d?). Otherwise, we make PA(S, = 1[s},d?) ~ fe(a, B),
with mean pp(Sh = 1/s},d?) and standard deviation 0.05.
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Assessment of Pa(Ds|d*, a,s;). To simplify matters, we shall actually consider that we know
the Attacker probability distribution pa(D2|d?, a,s1). We assume here that the Attacker expects a
proportioned response of the Defender to the type of attack a in each station, taking into account the
re-allocation restrictions due to her first allocation d! of defensive resources. Thus, we assess that

o |If s‘l =0, then Di2 = dil, unless di1 units are required in other places. This means that the oper-
ator shall not move defensive resources, unless necessary. Therefore, pa(D), < dl|d?, a;,s| =
0)=1.

. Ifs‘1 = 1, then the operator will try to make Di2 > a; (moving resources to that station, if possible).
We assume proportioned responses in the sense that

pa(Db =& +jldL,a = 1,5} = 1) x 0.50*D), j > 0,

if a; + ] is feasible. In the case this is not possible, Di2 will be as high as possible within di1 <
DIZ < gj.

Given an attack a = (a1, a, ag), we calculate for all possible reallocations d? = (d?, dZ,d?) based on
the rules above the following

pa(D2 =d?|d% a,s1) o [ [ pa(Dh = d?[d*, &, s}).
i

and finally, normalise them to add up 1.
Should we wish to add uncertainty around such assessments, we could use a Dirichlet model,
with means based on the above assessments, see French and Rios Insua (2000).

Assessment of Ua(a, s,,Vv). We assume that the consequences for the Attacker are related with
the value taken from the installations minus the cost of implementing the attacks. In particular, for

each station i we have that

—ak ifs?=0
pvi —ajk ifs?=1,

up(ai, sh, vi) = {

where Kk is the cost of the resources used in an attack to station i. Thus, assuming additivity across
the subnetwork stations, the overall value obtained by the Attacker is

3

> (sPpvi — aik).

i=1
We assume that the Attacker is (constant) risk prone in profits and, therefore, his utility function is
strategically equivalent to

ua(a, sz, v) = exp [c > (sPpvi — aik)] ,c>0.

By assuming, ¢ ~ U(0, C), we account for uncertainty in the utility function, leading to the uncertain
UA(a, So, V).
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Results

We have solved the example implementing the proposed approach in R. As indicated, we first simulate
to estimate pp(A|d?) for every feasible d* and then calculate the best defensive resource allocations
of the operator for both the initial and recovery phases.

The predictive conditional distributions pp(A|d*) were estimated through MC simulation and the
results are given in Table 15, where blank cells indicate a negligible probability.

Table 15: Predictive distributions over attacks, given first stage allocation of defences

A= (ag,a, ap)
000 001 002 010 0112 020 100 101 110 200

004 | 0.46 0.54

013 | 0.03 0.71 0.26

022 0.03 0.01 0.01 0.48 0.47

031 0.25 0.01 0.03 0.01 0.7

040 0.22 0.02 0.76

103 | 0.07 0.28 0.24 0.41

112 | 0.13 0.2 0.083 0.01 0.05 0.17 0.3 0.11
dt 121 0.38 0.05 0.09 0.48

130 0.53 0.01 0.46

202 | 0.07 0.16 0.08 0.26 0.37 0.06

211 0.45 0.09 0.3 0.16

220 0.65 0.03 0.14 0.18

301 0.43 0.52 0.05

310 0.71 0.24 0.05

400 | 0.35 0.65

We have computed the expected utilities of the fifteen feasible defensive allocations at the first
stage, and d; = (0, 4,0) results to be the initial defence allocation with the highest expected utility.
The associated contingency plan for recovery from attacks is shown in Table 16.

Although the strategy starts by offering maximum protection to the station with smallest value,
this defence is the one that offers more flexibility for response recovery, given the displacement con-
straints. Moreover, when it is only the final outcome of the attacks after the recovery phase the ones
that affect the utility of the defender. We can think of the defender’s resources allocated at the first
stage as preventive ones aimed at interdicting an attack before it is launched and the resources on
the second phase as reactive ones aimed at neutralising an attack that has been successfully initiated
before it can cause adverse effects. Thus, the intuition of protecting more the most valuable stations
seems false (given the structure, beliefs and preferences in the problem), due to being less flexible.
The contingency plan associated with the optimal initial defence does not provide any reallocation
defence in case no attack succeeds before the recovery phase (this circumstance is common to any
initial allocation). As attacks have a certain level of success, reallocations start to take place, taking
advantage of the flexibility of the initial resource allocation.

Clearly, the problem has a combinatorial nature. As an illustration, our small example has:

« 15 possible initial defence allocations: d* = (4,0,0),(3,1,0),...,(0,0,4)
» 10 possible types of attacks: a = (0,0, 0), ..., (0,0, 2)

e 7 possible attack outcomes: s; =(0,0,0),...,(0,1,1)
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Table 16: Optimal recovery plan d;(d;, a, s1), where d; = 040

a sy d;(dy,a,s1)

000 040
001 001 031
002 001 022
010 010 040
011 001 031
011 011 031
011 010 040
020 010 040
100 100 130
101 001 031
101 101 121
101 100 130
110 010 040
110 100 130
110 110 130
200 100 220

« 15 possible defence recovery reallocations (not all of them feasible given the initial ones): d? =
(4,0,0),(3,1,0),...,(0,0,4)

e 7 possible recovery outcomes: s, =(0,0,0),...,(0,1,1)
» The corresponding decision tree, given the various constraints, would have 1902 strategies.

We are, therefore, currently working on approaches that reduce the computational load in realistic
size problems, as those being posed in WP1, WP2 and WP3.
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ANNEX6. Modelling Adversaries

Traditional statistical risk analysis assumes that the outcome of situations when two or more
opponents are in conflict with each other or they are fighting for the same resources is gov-
erned by chance rather than the self-interested malicious actions of intelligent actors. Thus,
existing decision-theoretic abstractions and tools may be inadequate when there are two or
more intelligent opponents who make decisions for which the outcome is uncertain, as it
happens in SECONOMICS environments. We have tackled this problem from the perspec-
tive of Adversarial Risk Analysis, see Rios Insua et al. (2009), and one needs some model
for the decision making of all the participants. The objective, therefore, is to formalize the
analysis of risk from intelligent opponents. We thus argue for decision-theoretic asymmetric
prescriptive/descriptive approaches, in which we build a decision theoretic model for one of
the participants, which somehow captures the beliefs and preferences of other participants.
This approach to games, advocated by Kadane and Larkey (1982), has been favored in
the recent literature in counterterrorism and auctions; see e.g. Rios and Rios Insua (2009).
However, the literature has barely scratched how to proceed on modelling and learning about
the preferences and beliefs of the other agents, mainly appealing to heuristics.

Especially relevant could be methods that have been developed in the realm of machine
learning in games, which explicitly aim at modelling the utilities of players from observed
game traces or from its own experience, see e.g. Rezek et al. (2008). Particularly interesting
in this context are approaches to opponent modelling, which aim at capturing the opponent’s
utility function from its observed behavior, with the goal of predicting its actions and exploiting
its weaknesses. Even if a game-theoretically optimal solution to a game is known, a system
that has the capability to model its opponent’s behavior may obtain a higher reward.

We describe in what follows a description on how to model adversaries and its motiva-
tions within a specific security context in relation with hacking activities. This type of mod-
elling may be directly relevant on how we currently perceive the case studies in WP1, and
provides also hints on elements concerning cases in WP2 and WP3.

Introduction

There is widespread agreement that the high dependence on the Internet technology is
causing a higher security risk to customers, businesses and the society as a whole. A wide
variety of business models such as spam campaigns, botnets, identity theft and stealing
credit card account information has been flourishing in the last years. The prevalence of this
phenomenon led government agencies, international organizations and security vendors to
make a concerted effort to develop several security policies against security threats. As a
result, various policy tools and strategies have been proposed by researchers see van Eeten
and Bauer (2008); van Eeten et al. (2010), and have been enacted by governments (e.g.,
the U.S. security breach notification laws and data protection laws) and supranational orga-
nizations (e.g., the Seoul-Melbourne Anti-Spam Agreement and OECD Security Guidelines).
While a range of policy tools and strategies continue to be developed to deal with this issue,
most of them tend to be adopted without ascertaining their effectiveness. Moreover, few
countermeasures are currently addressing the ever increasing issue of cybercrime markets,
see Kanich et al. (2008); Motoyama et al. (2011). We investigate here the effectiveness of
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possible policies and strategies focusing mainly on exploit markets in which tools, exploits
and means to automatize cyberattacks are traded. Specifically, we use a scenario which
features two players: a hacker, who needs to choose between legal activities (i.e., selling
exploits to legitimate security vendors) and illegal activities (i.e. writing and selling an ex-
ploit kit in a black market), and a defender (i.e., a software vendor and/or a policy-maker)
who need to develop policies to mitigate hackers’ illegal activities. In the analysis, we use a
simple game theoretic model. We believe an exploit market is an appropriate target for the
application of game theory, since it can assist in increasing our understanding of the effects
of implemented security strategies on the decision making process of a hacker. Our primary
objectives are, therefore, to:

1. Form a foundation for an analysis of a hacker’s behaviour using game theory; we aim at
explaining why illegal hacking behaviour is preferred to lawfully conforming behaviour.

2. Study how hacking technologies affect and are affected by changes in regulation.

3. Investigate possibly effective strategies and policies to be enforced by government
agencies and security vendors to deter hackers’ malicious activities.

We show that, interestingly, hackers with average skill are prone to participate in mali-
cious cyber-activities. On the other hand, highly skilled hackers are more likely to engage
in legitimate activities and disregard criminal ones. We also identify that, of an array of
potentially effective strategic alternatives, directly reducing the returns from malicious activ-
ities is the only effective strategy for hackers both with a low-medium skill and with a high
skill. Furthermore, our results confirm that policy makers should put more effort into reactive
strategies than into proactive strategies to mitigate hackers’ malicious activities, as indicated
by Anderson et al. (2012).

However, we should note that this study is only a first step toward a more complete
modelling of cyber-perpetrators’ actions and incentives for a variety of decision-making sit-
uations. The results presented are not to be intended as definitive, but rather as a starting
point for more complete and articulated models for cybercrime. Nevertheless, we think our
work provides interesting insights into the cyber-security environment, including noteworthy
observations on which defensive actions are effective against strategic cyber-attackers.

Literature Review

While many studies have recognized and addressed the harmful effects of cyber-perpetrators’
wrongdoings, few have studied policies and strategies that can mitigate cyber-perpetrators’
malicious activities. Accordingly, a growing number of strategies and policies related with
cyber-crime have been employed in recent years, without enough consideration of the effects
of these on cyber-attackers. Furthermore, most of the studies that suggested measures for
preventing security incidents have been concerned about potential victims’ prevention ac-
tivities rather than investigating solutions to mitigate cyber-perpetrators’ criminal activities.
We first discuss cyber black market economics that initially motivated this study. Then, we
explore studies related with the redress of malicious cyber-activities.
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Cyber Black Market Economics

A first analysis of black market economics was addressed in Franklin et al. (2007). They
analysed the amount of credit card numbers, banking information, and Social Serial Num-
bers (SSNs) circulating in Internet Relay Chat (IRC)? markets for a period of 7 months.
According to their estimations the market is worth, overall, about 100 Million USD. Moreover,
they show that about 5 percent of the logged data concerns trading of compromised hosts.

However, Herley and Floréncio (2010) are skeptical about the reliability of these results.
They show that IRC markets feature all the characteristics of a typical “market for lemons”
Akerlof (1970): the vendor has no drawbacks in scamming the buyer because of the absence
of a unique-ID and of a reputation system. Moreover, the buyer cannot in any way assess
the quality of the good (i.e. the validity of the credit card and the amount of credit available)
beforehand. On a folkloristic note, indeed, IRC markets are well known, in the underground
community, to be markets for “newbie” and wanna-be scammers, see Herley and Floréncio
(2010). There are underground markets other than IRC ones: Motoyama et al. (2011) anal-
ysed the private messages exchanged in six underground forums. Most interestingly, their
analysis shows that these markets feature the characteristics typical of a regular market:
sellers do re-use the same ID, the transactions are moderated, and reputation systems are
in place and seem to work properly.

Dealing with criminals and illegal underground activities can be not only difficult and
prone to error, but interpretation of experimental results can also be tricky and sometimes
misleading, see Herley and Floréncio (2010); Kanich et al. (2011). Moreover, Anderson
et al. (2012) showed that, when it comes to new crimes perpetrated through and thanks to
the Internet, the investment to defend against them surpasses the gains for the attacker of
one order of magnitude: traditional technical countermeasures and strict business-internal
policies proved to be extremely expensive and unfruitful. This suggests that more efficient
and practical policies and “reactive” practices should be considered when dealing with cy-
bercrime (e.g. increasing the cost of attacks by putting the bad guys in jail).

In regards with these new forms of cybercrime, we are mainly interested in Exploit Kits:
these are tools traded in the black markets, see e.g. Symantec (2011), that, once deployed,
attack the victim systems that try to connect to them. They are widely used by cybercrim-
inals to, for example, build botnets. These attack techniques are very well explored in a
foundational study from Provos et al. (2008).

The economic returns for an attacker have been studied in literature as well. Kanich
et al. (2008) analyse the return on investment for three spam campaigns launched by the
Storm botnet, and show that the conversion rate (i.e. number of times the victim “clicks”
on the spammed link and goes through the trade process to buy the product) are extremely
low. This low success rate is taken into consideration by Herley (2012): he observes that
attackers pay the cost of “false positives” as well (e.g. users that are accounted as victims but
are not). As a result, the cost for an attacker steadily increases as the density of “vulnerable”
users decreases. Therefore, to economise the attack process, the attacker needs to choose
carefully the population of victims he/she is going to attack. For example, less unsuccessful
attacks (false positives) mean less visibility, which means that attackers can minimize the
chance of having the police knocking on their door.

2|RC used to be a very popular channel for quasi-anonymous instantaneous interactions between users.
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Redress of Malicious Cyber Activities

There has been abundant research on individual criminal behaviour. While the literature
focused mostly on analyzing a general model of criminal behaviour, Cornish and Clarke
(1987) started to study a crime-specific model. They argue that people’s choice to participate
in criminal activities might be very different according to what specific goal and act are taken
into account. More recently, many studies have started to apply the previous models and
findings to malicious behavior in cyber-space. Of these studies, the most referred policies for
mitigating illegal activities in cyber-space were the legal system. According to Lipton (2010),
despite several deficiencies, criminal laws could be the most effective way to deal with many
malicious activities in cyber-space. He also points out that criminal laws that deal particularly
with malicious cyber-activities should clearly state what constitutes cyber-crimes and avoid
relying on an approach from a pre-Internet era.

Recent literature suggests several additional mechanisms that could prevent cyber-perpe-
trators’ wrongdoings. Lipton (2010) and Broadhurst (2006) suggest to use education and
training to foster morality which could lead users to behave in a socially acceptable manner
by creating an internal sense of guilt and increasing moral satisfaction. Several researchers
including Hennig-Thurau and Walsh (2003), Kwok and Gao (2004), Liu et al. (2007) and
Wang et al. (2009) argue that monetary and economic rewards are one of the most im-
portant mechanisms that promote users’ well behaviour. They therefore conclude that the
existence of the reward system which allows users to converts their activities into monetary
rewards might increase their positive cyber-conduct. In designing a theoretical model, strate-
gies and policies against various malicious cyber activities identified in the literature review
are used as variables.

Game Theoretic Model for a Hacker’s behaviour

Alongside with our literature review, we base our model on our direct observation of the black
markets. With the purpose of getting a more detailed and precise idea of how blackhat trades
and tools work, we monitored the activities of many black markets for over 6 months. In this
work, in particular, we are interested in one of the kinds of tools traded in these markets:
Exploit Kits. These tools are usually licensed over a one-year period; prices may vary in
between 1,500 USD and 2,500 USD per year. In our model, cyber-attackers act as utility
maximizers evaluating various factors including penalties and rewards in perpetrating cyber-
crimes. In particular we consider a utility function that allows cyber-offenders to allocate
their time to illegal cyber-activities while considering potential benefits and costs resulting
from their wrongdoings.

The Basic Model

We consider two types of players in the study: a hacker who can sell an exploit kit which
includes various vulnerabilities, or can sell the vulnerabilities to legitimate vendors (e.g.,
Google’s bug bounty program, tipping point initiative or exposing them in a black-hat confer-
ence to be hired as a penetration tester) and a defender (e.g., a policy-maker or a security
vendor). We regard a hacker as a single decision making entity no matter who is an individ-
ual hacker or a hacking group and, throughout, we use he for a hacker. He faces uncertain
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situations and needs to make a choice from a set of available actions. Each of these actions
has a different probability of yielding an outcome. We assume that a hacker will choose the
action that is likely to produce the highest utility from monetary and nonmonetary rewards.
Actual outcomes are then assumed to be the result of the interplay between the decisions
made by a hacker and a defender.

Since exploit-kit markets consist of players with competing and conflicting interests, we
assume that the players make an effort to maximize individual payoffs (i.e., a noncooperative
form). In order to investigate the game, we adopt and extend the framework of traditional
game theoretic models Dixit et al. (1999) used in the studies of Mesquita and Cohen (1995)
and Krebs et al. (2003). Specifically, the game we propose here posits that a hacker’s
decision is a function of the expected payoffs from the exploit kits and the opportunity cost
from committing these malicious activities. In contrast, defenders are assumed to formulate
strategies based on what they know about hackers and exploit kit markets to deter hackers
from producing, spreading and selling their exploit kits.

Table 17 reports a sum-up of the variables and their respective meaning. First, we con-
sider a hacker. He has total time, T, and is assumed to participate in only two types of
activities: malicious activities, such as producing and selling exploit kits in black markets,
and normal activities including the development of legitimate software, that are socially ac-
ceptable. Therefore, we denote a fraction of a hacker’s total time devoted to normal activities
as L and a fraction of his total time spent on malicious activities as | (i.e., L=T —1).2

Table 17: Map of variables and their meaning in the model

Activity type Variable Meaning

hacker’s total time

time for detection and neutralization of criminal activity
probability of obtaining maximum benefit from legal activities
probability of obtaining only minimum benefit from legal activities
probability of detection of the criminal activity

probability of non-detection of the criminal activity

fraction of time the hacker devotes to legal activities
maximum benefit gained from a legal activity

minimum benefit gained from a legal activity

fraction of time the hacker devotes to criminal activities
maximum benefit gained from a criminal activity

cost for the hacker in perpetrating criminal activities

General

Legal

Criminal

[ -
ON—U)UJI_L':Q_é'OHﬂ

We now consider a hacker's expected utility. We assume that, from legitimate activities,
a hacker can achieve a maximum benefit B with probability p. In contrast, the hacker can
achieve only minimum benefits, S, such that B > S, with probability 1 — p. It should be noted
that B and S can be increased not only by incrementing monetary rewards from legitimate
activities, as suggested by Hennig-Thurau and Walsh (2003), Kwok and Gao (2004) and
Liu et al. (2007), but also by fostering morality or the intrinsic motivation to act legitimately
as proposed by Lipton (2010) and Broadhurst (2006). The levels of p and 1 — p are often
considered to be influenced by the hacker’'s personal characteristics, including education

3We also assume that there is no cost for the movement between the activities.

92



level and previous job experience. The hacker's expected utility from legitimate activities,
therefore, can be expressed as

EUn =L[pB + (1 — p)S],

where L=T.

We now take into account the case where a hacker chooses to participate in malicious
activities (i.e., writing an exploit kit and selling it in black markets). We denote by g the prob-
ability of an exploit kit developed by the hacker being detected and disabled by defenders.
The returns to the malicious activities are determined by the benefits gained from the exploit
kit, Z, the timing of the detection and disablement of the exploit kit, t, which is normalized
to be [0,1] (i.,e.,, 0 < t < 1), and the costs to the hacker, C. Similarly with the benefits
from legitimate activities, Z is an important factor that determines a hacker’s behaviour as
explained by Wang et al. (2009). The costs to the hacker, C, are caused by the detection
and disablement of the exploit kit, including the loss of reputation and the penalty from crim-
inal laws considered by Lipton (2010). Three things should be noted here: first, benefits
and costs are not restricted to monetary payoffs and losses. These can also take the form
of psychological rewards (e.g., self-esteem or self-confidence) and disappointment (e.g., a
sense of sinfulness or guilt). Second, unlike the previous criminology research, since it is
extremely difficult, if not impossible, to arrest a malicious hacker who develop an exploit kit,
see Group IB (2011), we assume that the hacker can still have the returns from his legitimate
activities even after an exploit kit developed by him is detected and disabled by defenders.
Lastly, unlike the previous literature, we include the time of the detection and disablement, t,
in the model since time has a high impact on a hacker’s final payoffs. As a result, we define
the returns from an exploit kit being detected as (T — L)(Zt — C) + L[pB + (1 — p)S]. On the
other hand, the probability of a hacker’s exploit kit not being detected by defenders can be
expressed as (1 — q). In this case, the returns are equal to (T — L)Z + L[pB + (1 — p)S].
Putting it all together, a hacker’s expected utility of committing malicious activities in line with
the ideas of the time allocation can be denoted as

EUm =q{(T - L)(Zt - C)+L[pB + (1 — p)S]} + (L — g){(T —L)Z +L[pB + (1 — p)S]}.

As a result, if a hacker puts all of his time on malicious activities, the expected utility becomes
T[g(Zt — C) + (1 — g)Z]. From these expected utility functions, we can use a game theoretic
model to investigate a hacker’s decision process.

In the game, a defender moves first, so as to decide whether to enforce security policies
and strategies against the activities related with exploit kits. A hacker then should decide
whether he will involve in normal activities or malicious activities. If the hacker chooses
to participate in malicious activities, the defenders again have to decide whether or not to
impose additional security policies and strategies to the hacker’'s behaviour. To solve this
game theoretic model, it is important to identify the equilibria of the game. These show us
under which conditions a hacker is expected to choose his involvement between socially
acceptable activities and malicious activities. Briefly speaking, a hacker determines whether
malicious activities or socially acceptable activities will yield a greater expected utility. If
he believes EUy > EUy, then socially acceptable activities will be selected. Otherwise, a
hacker will start allocating his time to malicious activities.
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A Hacker’'s Response to Parameter Shifts

In this subsection, we examine the hacker’s supply shift of malicious activities in response
to changes in strategies. Following Mesquita and Cohen (1995) and Krebs et al. (2003), we
manipulate six possible remedies for malicious activities in the model: p, q, S, B, C and Z.
In addition to these variables, we also propose manipulating the timing of the detection and
disablement (t). This is because defenders (e.g., security vendors) can affect the value of
an exploit kit by providing their customers with patches which can disable the exploit kit, or
can shorten the timing of the detection of the exploit kit by monitoring exploit markets.

Our simulation adopts an approach used in the study of Krebs et al. (2003). In each
simulation analysis, we normalize all the values of the variables to [0, 1]. We then fix all of
the variables except for the value for the key variable being manipulated: other things being
equal, the key variable whose effect is being simulated will increase from 0.05 to 1.00 by
0.05 steps. As pointed out by Krebs et al. (2003), while fixed values used in the previous
studies might be appropriate for the purpose of each of them, some of the variables should
be adjusted for the purpose of this study. We therefore estimate the values of q, C, Z, B,
t and L based on several months of explorations in the exploit markets while we follow the
study of Krebs et al. (2003) for the values of p and S at .5 and .3, respectively. As for q,
it may be very low as explained in Verizon’s 2012 report on data breaches investigations
Baker et al. (2012). Moreover, cooperation between law forces is often difficult*, and the rate
at which an attacker can change the address of his exploit kit is way higher than its detection
rate by lawful security researchers. As a result, we fix the value of g at 0.1. C may also be
low since arrest of a hacker is quite hard and the actual arrest rate is very low, see Baltazar
(2011); Herley (2009); Group IB (2011). While cyber-criminals face very severe penalties
when caught®, it is certainly hard to prosecute and apprehend them since they usually stay
outside the reach of law enforcement, see van Eeten and Bauer (2008). Given this situation,
we fix the value of C at 0.2.

As for Z and B, we consider two cases: In one case, we fix the values of Z at 1.0 and B
at 0.8 (B < Z). In the other case, we choose the values of Z at 0.8 and B at 1.0 (Z < B).
This is to compare different types of hackers: a hacker valuing self-esteem and altruism vs a
hacker valuing sense of superiority and dominance. While indeed regular criminals often act
out of need (e.g. they do not have a satisfying social status or they do not have a job), cyber-
criminals are seemingly often well-educated and financially stable members of the society,
see Group IB (2011). Hackers are indeed well-known to often act for fun or for reputation,
see Turgeman-Goldschmidt (2005). Being hackers’ motivation not strictly related with their
condition in the society, but rather an “emotional state”, we feel that we should distinguish
between the two cases in which the hacker is a) lawful-but-curious and b) criminally-minded.

In addition to these values, we also estimate the values for t and L which were not in-
troduced in the previous studies. As previously mentioned, the detection rate of exploits
is traditionally very low. Exploit kits continuously change domain, therefore tracking them
down and disabling them is a very hard if not impossible task, see Grier et al. (2012). In our
observation of exploit markets, we found a number of Exploit Kits that feature 5+ years old

“http://nakedsecurity.sophos.com/2012/01/19/koobface-gang-servers-russia-police/, accessed July 05
2012

Shttp://www.darkreading.com/database-security/167901020/security/attabreaches/224200531/index.html,
accessed July 05 2012
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vulnerabilities at the time of release. We therefore conclude that the average time for the
neutralisation of an Exploit Kit is very high: we sett to .9.

As for L, we fix its value at 0.9, meaning that the fraction of time they devote to the
criminal activity is low (0.1). This is because most of the hackers have regular jobs, see
Group 1B (2011), and exploit kits do not require much time or effort to be managed, once
their development is complete and the final product marketed.

Results

We now discuss the results of the simulation tests. In the simulation we let the variables p, q,
S, Z change from 0.05 to 1 with 0.05 steps. When a variable does not change, it is fixed to
the value identified above. We ran simulations for both Z > B and B > Z. Unsurprisingly, we
found that most of the strategies and policies for reducing malicious activities of a hacker do
not work as intended by defenders when the hacker values the benefits from exploit kit devel-
opment and marketing more than the benefits from legitimate activities (Z > B).°® However,
it confirms that lowering the value of Z is the only effective strategy for hindering hackers
participating in malicious activities. These results correspond to those from Mesquita and
Cohen (1995)’s foundational study from 1995.
The results for the second case (B > Z) are reported in Table 18.

Table 18: Simulation Results when B > Z. Z is fixed at 0.8 and B is fixed at 1.0.

Changes in key variable Model 1. Model 2: Model 3: Model 4:
p changes ¢ changes S changes Z changes

0.05 Succeed
0.1 Succeed
0.15 Succeed
0.2 Succeed
0.25 Succeed
0.3 Succeed
0.35 Succeed
0.4 Succeed
0.45 Succeed
0.5 Succeed
0.55 Succeed Succeed Succeed
0.6 Succeed Succeed Succeed
0.65 Succeed Succeed Succeed
0.7 Succeed Succeed Succeed
0.75 Succeed Succeed Succeed

0.8 Succeed Succeed Succeed
0.85 Succeed Succeed Succeed

0.9 Succeed Succeed Succeed
0.95 Succeed Succeed Succeed

1 Succeed Succeed Succeed

5The table of the results is not presented here, but is available for the interested reader upon request.
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The first column indicates the changes of the key variable in increments of 0.05 ranging
from 0.05 to 1.00. The columns of each simulation model show the results of the comparison
between the expected utilities from normal activities and malicious activities (i.e., EUy —
EUw). That is, these columns display whether the changes in the variable are likely to be
effective for reducing malicious activities: succeed indicates that the key variable might be
effective whereas a blank cell means that the changes in the key variable will not be effective.
Note that the models with the changes in the values of C, B and t are eliminated from Table
18 because changes in these variables are not effective for mitigating malicious activities.

Table 18 indicates that, in addition to the strategies for decreasing the value of Z, several
other strategies that are not effective in the previous tests become effective for reducing ma-
licious activities if a hacker values the benefits from lawful activities more than the benefits
from malicious activities. In detail, Model 1 suggests that increasing the value of p will make
normal activities more attractive than malicious activities. Model 1 also indicated that only
highly skilled hackers (i.e., hackers with a high probability of getting the maximum benefits
from legal activities) are likely to devote their resources to legitimate activities. Model 2 con-
firms that the increase in the value of q can be an effective strategy for reducing malicious
activities while such a scenario is unlikely as explained above. Model 3 also suggests that
the reduction of the gap between the minimum and maximum benefits from legitimate ac-
tivities increases hackers’ participation in legitimate activities. Lastly, Model 4 indicates that
reducing the value of Z makes malicious cyber activities less attractive.

In sum, the simulation models suggest the following facts: first, the only key variable
which can be effective for hackers with either Z > B or B > Z is to reduce the value of
Z. However, developing policies and strategies to reduce the value of Z might be difficult.
While several researchers have suggested building legitimate “markets for vulnerabilities” for
reducing the the value of Z, see Anderson and Moore (2006), these markets are not as well-
activated and well-developed as originally intended, as discussed in Miller (2007). Second,
while shortening the timing of the detection and disablement of a security threat might be
an effective tool for reducing malicious activities, it might do nothing to make hackers reduce
their malicious activities. Third, it is identified that developing policies and strategies for
hackers with Z > B is more problematic than developing those for hackers with B > Z.
That is, hackers who value the benefits from legitimate activities more than the benefits from
malicious activities are likely to give up malicious activities by changing the values of p, g, S
and Z; on the other hand, hackers who regard the benefits from malicious activities higher
than the benefits from normal activities are still likely to participate in malicious activities
even after the manipulation of the key variables except for Z. This result corresponds to the
hackers’ profiles reported in other articles and in the news, see Group IB (2011)"8: since
they are relatively young, these traffic hackers are more likely to participate in malicious
activities motivated by thrill-seeking, feelings of addiction, peer recognition, boredom with the
educational system and lack of money, see Turgeman-Goldschmidt (2005); Taylor (1999).

Thttp://www.informationweek.com/security/management/amazoncom-ddos-attacker-busted-in-cyprus/240004073
8http://nakedsecurity.sophos.com/koobface/
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Discussion

Currently, most of the research on malware threats has been studied from a technical lens,
and hence other domains such as economic and political perspectives have been largely
ignored. Furthermore, the focus on the research is mostly on the targets of attacks rather
than on strategies and policies that can mitigate criminal activities associated with malware.
We aimed at filling in this gap in the literature by conducting a study on strategies and
policies for reducing malicious cyber-activities from an economic perspective. The results of
this study are therefore not to be intended as definitive: while many of our conclusions are,
we believe, sound and promising for future research, more complete models are needed to
design realistic and effective mitigation strategies.

However, some key insights identified in this work could be interesting pointers for future
work. Specifically, our results show that only very good programmers and professionals who
have high probability of getting maximum payoffs from legitimate activities are not prone to
engage in criminal activities. Indeed, only when one’s likelihood of getting maximum benefits
from lawful activities rises we can expect the actor not to play maliciously. This implies that
it is not only true that one does not have to be a very good programmer in order to be a
malicious hacker, but also true that a very good programmer is not likely to be a malicious
hacker. Therefore,

1. Good policies that can increase the likelihood of achieving maximum returns from law-
ful activities would prevent the very good professionals from going rogue.

2. Policies could also be tuned to assure that only low-scale professionals are willing to
“join the dark side”. Accordingly, this would decrease the quality of the attack tools
traded in black markets, and possibly their effectiveness in infecting machines and, for
example, building botnets.

Another possible strategy would be to increase the minimum benefits for a hacker (S in our
model). This would encourage even “average skilled” hackers in joining legal activities rather
than criminal ones.

Moreover, despite resulting from a completely different approach, our conclusions are in
accordance with those of a recent study from Anderson et al. (2012): “response policies” is
where policy makers should put more effort into, and increasing detection rates is an effective
strategy to deter cyber-criminals from going rogue. We are, however, very far from achieving
that goal: our model predicts a detection rate higher than 50% to be effective; in the current
state of cyber-security, this is far from being accomplished. A more plausible strategy is to
cleverly increase the minimum benefit for legitimate activities (S) in cooperation with higher
detection rates (q): this may turn out to be an effective strategy in real-world scenarios.
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