Multithreat Multisite Protection: An Adversarial Risk Analysis Approach

J. Cano1 D. Ríos Insua2

1URJC
2Royal Academy of Sciences, Spain

XXIII SRA. Istanbul. June 17, 2014
Outline

Multithreat protection for one site

Multithreat multisite protection

Case study
General overview

- ARA (Ríos Insua et al., 2009) approach for multithreat problem over one site
 - Uncoordinated attacks.
 - Outcome of attacks might affect each other.

- Extension to multiple sites (Ríos Insua et al., 2014b)
 - Sequential Defend-Attack for each site/threat.
 - Models related by resource constraints and value aggregation.
 - No particular spatial structure.

- Case study: metro network protection against
 - Fare evasion. (Ríos Insua et al., 2014a)
 - Pickpocketing by a team.
1. Multithreat protection for one site
What is ARA?

- ARA builds decision analysis model for Defender, who forecasts actions of her intentional adversaries.
- Once with this knowledge, she decides optimal defense against attacks.
- Sequential Defend-Attack model.
 - Defender first chooses a portfolio of countermeasures
 - After observing it, Attacker decides his attack.
Description of problem

- Basic multithreat protection problem

- Defender aims at finding optimal defense d^*.
 - Consequences evaluated through utility $u_D(d,s_1,\ldots,s_m)$.

![Diagram of the multithreat protection problem with nodes and arrows representing the interactions between attackers, defense, and consequences.](SECONOMICS)
Optimal solution

- Assume cond. ind. \(S_i \mid d, a_i \rightarrow p_D(s_i \mid d, a_i) \).
 - Obtain expected utility, given the attacks
 \[
 \psi_D(d \mid a_1, \ldots, a_m) = \int \cdots \int u_D(d, s_1, \ldots, s_m) p_D(s_1 \mid d, a_1) \cdots p_D(s_m \mid d, a_m) \, ds_1 \cdots ds_m.
 \]
 - Suppose Defender able to build models \(p_D(a_i \mid d) \).
 - Assume cond. ind. of \(a_1, \ldots, a_m \) given \(d \). Compute
 \[
 \psi_D(d) = \int \cdots \int \psi_D(d \mid a_1, \ldots, a_m) p_D(a_1 \mid d) \cdots p_D(a_m \mid d) \, da_1 \cdots da_m,
 \]
 and solve
 \[
 d^* \leftarrow \max_{d \in \mathcal{D}} \psi_D(d).
 \]
Assessment of Attacker’s intentions

- To obtain $p_D(a_i|d)$, solve each attacker’s problem (E.U. max.)

$$a_1^*(d) = \arg \max_{a_1 \in \mathcal{A}_1} \int u_{A_1}(a_1, s_1) p_{A_1}(s_1|d, a_1) ds_1.$$

- Defender lacks knowledge $(u_{A_1}(\cdot), p_{A_1}(s_1|\cdot)) \rightarrow (U_{A_1}, P_{A_1})$.

- Approximate $\hat{p}_D(a_i|d)$ through Monte Carlo simulation.

 - Assessment of $P_{A_1}(\cdot)$ typically based on $p_D(\cdot)$

 - Dirichlet distribution (process) for discrete (continuous).

 - For U_A, information about Attacker’s interests

 - Aggregate with weighted measurable value function.
 - Assume risk proneness.
 - Distributions over weights and risk proneness coefficients.
Possible generalizations

- *(left)* If simultaneous, but uncoordinated attacks \(a_1, \ldots, a_m\) jointly detrimental in face of \(d\)

\[
p_D(s_1|d, a_1) \cdots p_D(s_m|d, a_m) \rightarrow p_D(s_1|d, a_1, \ldots, a_m) \cdots p_D(s_m|d, a_1, \ldots, a_m).
\]

- *(right)* Cascading effect between results of attacks

\[
p_D(s_1|d, a_1) p_D(s_2|d, a_2) \rightarrow p_D(s_1|d, a_1, s_2) p_D(s_2|d, a_2).
\]
2. Multithreat multisite protection
General methodology

1. Deploy one of previous models over each site.
2. Resource constraints coordinate models.
3. Aggregate value at nodes applying utility function.
4. Defender deploys d_j over site j, fulfilling $g(d_1, \ldots, d_n) \in \mathcal{D}$.
5. i-th Attacker performs a_{ij} over j-th site, satisfying $h_i(a_i) \in \mathcal{A}_i$.
6. Interaction yields random results $S_{ij} \in \mathcal{S}_{ij}$.
7. Defender aggregates results through $u_D(d, s_1, \ldots, s_m)$.
8. To find optimal defense strategy d^*, compute

$$
\psi_D(d|a_1, \ldots, a_m) = \int \cdots \int u_D(d, s_1, \ldots, s_m) p_D(s_{11}|d_1, a_{11}) \cdots p_D(s_{mn}|d_n, a_{mn}) ds_1 \cdots ds_m.
$$

$$
\psi_D(d) = \int \cdots \int \psi_D(d|a_{11}, \ldots, a_{mn}) p_D(a_{11}|d_1) \cdots p_D(a_{mn}|d_n) da_{11} \cdots da_{mn}.
$$
3. Case study
Influence diagram

Colluders decision
- Prop. of colluders
- Prop. of fraudsters

Cost colluders

Cost operator

Fraud cost

Counter-measures

Theft level

Costs

Num. of customers

Business level

Number of thefts

Loot

Cost pick-pockets

u_{A_1}

u_D

u_{A_2}
Description of problem

- Metro operator D protecting from:
 - Fare evasion. Two types of evaders:
 - Standard (standard random process).
 - Colluders A_1 (ARA; explicitly modeling intentionality).

<table>
<thead>
<tr>
<th>Role</th>
<th>Fare</th>
<th>Pick</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1 Inspector</td>
<td>Prev./rec.</td>
<td>—</td>
<td>Inspect customers. Collect fines</td>
</tr>
<tr>
<td>d_2 Door guard</td>
<td>Prev.</td>
<td>—</td>
<td>Control access points</td>
</tr>
<tr>
<td>d_3 Door</td>
<td>Prev.</td>
<td>—</td>
<td>New secured automatic access doors</td>
</tr>
<tr>
<td>d_4 Ticket clerk</td>
<td>Prev.</td>
<td>—</td>
<td>Current little implication in security</td>
</tr>
<tr>
<td>d_5 Guard</td>
<td>Prev.</td>
<td>Prev./rec.</td>
<td>Patrol along the facility</td>
</tr>
<tr>
<td>d_6 Patrol</td>
<td>—</td>
<td>Prev./rec.</td>
<td>Trained guard+security dog</td>
</tr>
<tr>
<td>d_7 Camera</td>
<td>—</td>
<td>Prev.</td>
<td>Complicate pickpocket actions</td>
</tr>
<tr>
<td>d_8 Campaign</td>
<td>—</td>
<td>Prev.</td>
<td>Alert users about pickpockets</td>
</tr>
</tbody>
</table>
Feasible portfolios

- Associated unit costs $q_1, q_2, q_3, q_5, q_6, q_7$.
- $d_4 \in \{0,1\}$ ($d_4 = 1 \rightarrow$ clerks involved, incurred costs q_4).
- $d_8 \in \{0,1\}$, ($d_8 = 1 \rightarrow$ operator invests q_8).

$$q_1 d_1 + q_2 d_2 + q_3 d_3 + q_5 d_5 + q_6 d_6 + q_7 d_7 + q_8 d_8 \leq B,$$

$$d_1, d_2, d_3, d_5, d_6, d_7 \geq 0,$$

$d_1, d_2, d_3, d_5, d_6, d_7$ integer,

$$d_3 \leq \bar{d}_3,$$

$$d_4, d_8 \in \{0,1\},$$

\bar{d}_3 maximum $\#$ of doors that may be replaced.
Fare evasion

- Operator invests $d_c = (d_1, d_2, d_3, d_4, d_5)$. (Constraints)
 - Fare evasion costs (partly mitigated by fines).
- $\phi(d_c)$ evaders proportion. $q(d_1)$ inspection proportion.
 - $1 - \phi(d_c) \rightarrow N_1$ civic customers pay ticket.
 - $\phi(d_c)[1 - q(d_1)] \rightarrow N_2$ not pay, not caught (loss v_c).
 - $\phi(d_c)q(d_1) \rightarrow N_3$ do not pay but caught (income f_c).

- **Colluders** see security investments d_c (Seq D-A).
- Fare evasion proportion $r \rightarrow r'$, inspection proportion $q_A(d_1)$
 - $1 - r' \rightarrow M_1$ pay, abortion (income v_c).
 - $r'(1 - q_A(d_1)) \rightarrow M_2$ not pay, not caught (loss v_c).
 - $r'q_A(d_1) \rightarrow M_3$ not pay, caught (income f_c).

- Operational costs, including preparation costs q_c
 \[
c_{A_1} = v_c(M_2 - M_1) - f_cM_3 - rq_cM.
\]
Pickpocketing

- Operator invests $d_p = (d_5, d_6, d_7, d_8)$. (Constraints)
 - Decrease in business level $b - b_0$.
- Pickpockets see security investment d_p (Seq D-A).
- Theft level $t \rightarrow t'$, abortion τ, success ξ, detention θ
 - $1 - (1 - \tau)\xi \rightarrow t_1$ not succeed.
 - $(1 - \tau)\xi \theta \rightarrow t_2$ succeed, but caught (fine f_p).
 - $(1 - \tau)\xi (1 - \theta) \rightarrow t_3$ succeed, not caught (loot ℓ).
- Operational costs, including preparation costs q_p
 \[c_{A_2} = -q_p t - f_p t_2 + \ell t_3. \]
- Both colluders and pickpockets risk prone in benefits
 \[u_{A_i}(c_{A_i}) = \exp(k_{A_i} \cdot c_{A_i}), \quad k_{A_i} > 0, \quad i = 1, 2. \]
Solving the bithreat problem

- Operator benefit/cost balance

\[
c_D(N_1, N_2, N_3, M_1, M_2, M_3, d, b) =
\]
\[
- \nu_c(N_2 + M_2) + f_c(N_3 + M_3) - \sum_{k=1}^{8} q_k d_k - (b_0 - b).
\]

- Operator risk averse to increase in income,

\[
u_D(c_D) = -\exp(-k_D \cdot c_D).
\]

- Evaluate security plan \(d \) maximizing expected utility

\[
\psi_D(d) = \int \left\{ \int \int \left[\sum_{N_1, N_2, N_3, M_1, M_2, M_3} p_{M_1 M_2 M_3 d_c} \cdot p_{N_1 d_c} p_{N_2 d_c} p_{N_3 d_c} \cdot u_D(c_D) \right] p_D(t|d_p) p_D(b|t) dt db \right\} \times p_D(r|d_c) dr.
\]
A case study

- Colluders and pickpockets do not make common cause.
- Cascading effect \(\rightarrow \) N. of customers affected by pickpockets through business level \(\rightarrow \) influence colluder’s decision.
- A subnetwork of 4 stations, with models like above, related by resource constraints and value aggregation.

<table>
<thead>
<tr>
<th>Station</th>
<th>Passengers</th>
<th>Budget (k€)</th>
<th>Fare evasion</th>
<th>Pickpocketing</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,000,000</td>
<td>30–100</td>
<td>Moderate</td>
<td>Moderate</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>1,000,000</td>
<td>30–100</td>
<td>Moderate</td>
<td>Moderate</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>1,000,000</td>
<td>30–100</td>
<td>High</td>
<td>Moderate</td>
<td>1 inspector</td>
</tr>
<tr>
<td>4</td>
<td>5,000,000</td>
<td>50–100</td>
<td>Moderate</td>
<td>High</td>
<td>1 guard</td>
</tr>
<tr>
<td>Total</td>
<td>8,000,000</td>
<td>120–200</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

- Resource upper bounds \(\bar{d}_k = 4 \), \(k = 1, 2, 3, 5, 6 \) and \(\bar{d}_7 = 8 \).
- At most, two units of each countermeasure at a single station.
Results

<table>
<thead>
<tr>
<th></th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>d_6</th>
<th>d_7</th>
<th>d_8</th>
<th>Invest. (−)</th>
<th>Fines (+)</th>
<th>Loss fare (−)</th>
<th>Loss pick. (−)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>—</td>
<td>35,000</td>
<td>—</td>
<td>101,938</td>
<td>42,595</td>
</tr>
<tr>
<td>S_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>—</td>
<td>35,000</td>
<td>—</td>
<td>114,280</td>
<td>33,757</td>
</tr>
<tr>
<td>S_3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>—</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>65,000</td>
<td>162,688</td>
<td>234,401</td>
<td>127,994</td>
</tr>
<tr>
<td>S_4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>—</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>—</td>
<td>65,000</td>
<td>—</td>
<td>394,731</td>
<td>78,290</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>200,000</td>
<td>162,688</td>
<td>845,170</td>
<td>282,636</td>
</tr>
</tbody>
</table>

- Door guards, cameras and awareness plan not worth it.
- Involve ticket clerks in observation tasks.
- Annual expected losses 1,225,118 € (around 2,5 M€ otherwise).
Conclusions

- ARA methodology for protecting multiple sites from multiple uncoordinated threats.
- Sequential Defend-Attack model for each attacker and site.
- Models coordinated by resource constraints and value aggregation over various sites and threats.
- Case study in metro security → fare evasion and pickpocketing (cascading effect).
Future research

- Multiple defenders and their eventual coordination.
- Coordination of attacks and their rationality type.
- Further interactions among defenders and attackers.
- Mobility of resources.
Acknowledgments

▶ This project has received funding from the European Union’s Seventh Framework Programme for Research, Technological Development and Demonstration under grant agreement no 285223.

▶ Work has been also supported by the Spanish Ministry of Economy and Innovation program MTM2011-28983-C03-01 and the Government of Madrid RIESGOS-CM program S2009/ESP-1685.

▶ We are grateful to TMB experts and stakeholders for fruitful discussion about modeling issues.
